نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران

2 دانش آموخته کارشناس ارشد آبخیزداری، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

با توجه به این­که بخش مهمی از جریان رودخانه‌های دائمی را آب‌های زیرزمینی تشکیل می‌دهند با دانستن سهم جریان پایه می‌توان نقش آب‌های زیرزمینی را در حفظ حیات رودخانه‌ها و برقراری تعادل بوم­شناسی حوزه آبخیز تعیین کرد. همچنین، شناخت فرآیندهای تولید رواناب برای ارزیابی اثرات تغییرات اقلیمی و کاربری اراضی برای پاسخ هیدرولوژیکی حوضه نیز بااهمیت می‌باشد. در این پژوهش تفکیک آب‌پایه در حوزه‌ آبخیز دورود واقع در استان لرستان با شش محدوده‌ی مطالعاتی تیره‌ دورود، بیاتون، سیلاخور، آبسرده، سراب سفید و گله‌رود طی سال‌های 1390-1361 به‌وسیله روش‌های PART، فیلتر عددی برگشتی یک پارامترِ (Lyne-Hollick ) و دو پارامترِ (Eckhardt ) با فیلترهای 925/0، 95/0، 975/0 و 99/0 انجام شد. سپس نتایج حاصل از این روش‌ها به‌منظور تعیین مناسب‌ترین روش با نتایج حاصل از روش BFI، مقایسه شد. نتایج نشان داد در حوزه‌ آبخیز تیره‌ دورود روش Lyne-Hollick  با فیلتر 975/0 بهترین روش برای جداسازی آب‌پایه از رواناب مستقیم می‌باشد. در زیر­حوزه‌ آبخیز بیاتون روش Eckhardt  با فیلتر 99/0، در زیر حوزه سیلاخور روش Lyne-Hollick  با فیلتر 975/0، در زیر­حوزه آبسرده روش PART و Lyne-Hollick  با فیلتر 975/0 به‌صورت یکسان، در زیر­حوزه سراب سفید روش Lyne-Hollick  با فیلتر 95/0 و در زیر­حوزه‌ آبخیز گله‌رود روش Lyne-Hollick  با فیلتر 925/0 روش مناسب جهت تجزیه‌ی هیدروگراف می‌باشد. با توجه به نتایج حاصل از این مطالعه، با داشتن آمار روزانه‌ی دبی این حوزه‌ آبخیز در سال‌های آتی می‌توان روش‌های مذکور را برای تجزیه‌ی هیدروگراف به کاربست.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of Separation Methods for Baseflow from Direct Runoff in Doroud Basin, Lorestan, Iran

نویسندگان [English]

  • Rafat Zare Bidaki 1
  • Nasrin Gharahi 1
  • Maryam Mahdianfard 2

1 Assist. Professor, Department of Rangeland and Watershed Management Sciences, Faculty of Natural Resource and Earth Science, Shahrekord University, Shahrekord, Iran

2 Alumni of Management of Deseret Area, Faculty of Natural Resource and Earth Science, Shahrekord University, Shahrekord , Iran

چکیده [English]

As groundwaters make an important part of the permanent rivers flow, their role in maintaining the life of rivers and creating ecological balance in watershed can be determined by knowing the base flow contribution. Moreover, identification of runoff production processes is crucial for assessing the effects of climate change and landuse on the hydrologic response of the watershed. In the current study, the base water separation in Doroud watershed located in Lorestan province with 6 study areas was performed during a period from 1982 to 2011 using PART, one parameter recursive digital filter (Lyne -Hollick) and two parameters recursive digital filter (Eckhart) with filters value of 0.925, 0.95, 0.975, and 0.99. Then the results obtained by these methods were compared with those of BFI method. The comparisonshowed that Lyne -Hollick method with filter value of 0.975 was the best method to separate base water from direct runoff in Doroud watershed. In Bayatan watershed, Silakhor sub-watershed, Ab Sardeh sub-watershed, Sarab Sefid sub-watershed, and Gale Rood sub-watershed, the Eckhart's method with filter value of 0.975, Lyne -Hollick method with filter value of 0.975, PART and Lyne -Hollick method with filter value of 0.975, Lyne -Hollick method with filter value of 0.95, and Lyne -Hollick method with filter value of 0.925 were the suitable methods for hydrograph decomposition, respectively. Considering the results obtained by this study and having statistics of this watershed flow rate ona daily basis, the abovementioned methods can be used in future years for hydrograph decomposition.

کلیدواژه‌ها [English]

  • Baseflow Index
  • Hydrogragh
  • Lorestan Province
  • Recursive Digital Filter
Ahiablame L., Chaubey I., Engel B., Cherkauer K. and Merwade V. (2012). Estimation of annual baseflow at ungauged sites in Indiana. J. Hydraul., 476, 13–27.
 
Aksoy H.K. (2009). Filtered smoothed minima base flow separation method. J. Hydrol., 327, 94-101.
 
Alishvandi B., Fakhireh A., Moghadamnia A. and Samiee M. (2011). Baseflow separation from direct runoff on the hydrograph of Babahaji River, Maharlou watershed. 7th National Seminar on Watershed Management Sciences and Engineering, Isfahan University of Technology, Iran [In Persian].
 
Arnold J. G. and Allen P M. (1999). Validation of automated methods for estimating base flow and groundwater recharge from stream flow records. J. Am. Water. Resour. Assoc., 35(2), 411-424.
 
Chapman T. G. and Maxwell A. I. (1996). Base flow separation–comparison of numerical methods with tracer experiments. 23rd Symposium, Hydrology and water resources, 96(05), 539-545.
 
Chen L., Zheng H., Chen Y. D. and liu C. (2008). Baseflow separation in the source region of the yellow river. J. Hydrol. Eng., 13, 541-548.
 
Dolatabadi N., Hoseini A., Darari K. and Mosaedi A. (2012). Estimation of baseflow using Recursive Digital Filtering method and BFI_3.0 Model (Case study: some parts of Maharloo-Bakhtegan Catchment). 3rd National conferance on integrated water resources management. Sari, Iran [In Persian].
 
Eckhardt K. (2005). How to construct recursive digital filters for base flow separation. Hydrol. Proces., 19(2), 507-515.
 
Esmali A. and Samiee M. (2011). Comparison of different methods in separation of flow hydrograph at Hanifaqan station. 2011, 4th conferance on iran water resources management. Amirkabir University of Technology. Tehran [In Persian].
 
Ghanbarpour M. R., Teimouri M. and Gholami S. H. (2008). Comparison of Base Flow Estimation Methods Based on Hydrograph Separation (Case study: Karun Basin). J. Sci. Technol. Agric. Natur. Resour., 12(44), 1-11 [In Persian].
 
Gregor M. (2010a). User Manual "How to use Hydrooffice.
 
Gregor M. (2010 b). User Manual "BFI+ 3.0".
 
Hall F. R. (1968). Base flow recession, a review. Water. Resour. Res. 4(5), 973–983.
Hasani M., Malekian A., Rahimi M., Samee M. and Khamoush M.R. (2012). Study of efficiency of various base flow separation methods in arid and semi-arid rivers (Case study: Hablehroud basin). Arid. Biome. Sci. Res., 2(2), 275-287 [In Persian].
 
Hong J., Lim K J., Shin Y. and Jung Y. (2015). Quantifying Contribution of Direct Runoff and Baseflow to Rivers in Han River System, South Korea. J. Korea. Water. Resour. Assoc., 48, 309–319.
 
Lyne V. D. and Hollick M. (1979). Stochastic time-variable rainfall runoff modeling. Astralian national conference publication, Australian. 89–92.
 
Mahdavi M. (2007). Applied Hydrology. University of Tehran Publications, Tehran. 360pp [In Persian].
 
Mostafazadeh R., Bahremand A. and Sadoddin A. (2009). Simulating the direct runoff hydrograph using Clark instantaneous unit hydrograph (Case study: Jafar-Abad Watershed, Golestan Province). J. Soil. Water. Conser., 16(3), 105-122 [In Persian].
 
Mul M. L., Mutiibwa R K., Uhlenbrook S. and Savenije H.H.G. (2008). Hydrograph separation using hydrochemical tracers in the Makanya catchment, Tanzania. Phys. Chem. Earth, 33, 151–156.
 
O Brien R. J., Misstear B. D., Gill L. W., Deakin J. L. and Flynn R. (2013). Developing an integrated hydrograph separation and lumped modeling approach to quantifying hydrological pathways in Irish river catchments. J. Hydrol., 486, 259-270.
 
Rimmer A. and Hartmann A. (2014). Optimal hydrograph separation filter to evaluate transport routines of hydrological models. J. Hydrol., 514, 249-257.
 
Rivard C. D., Lavoie R., Lefebvre S., Séjourné C., Lamontagne E. G. and Johnson M. J. (2013). An overview of Canadian shale gas production and environmental concerns. Int. J. Coal. Geol., 126, 64-76.
 
Rutdledge A. T. (1998). Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow data—update. U.S. Geological Survey Water-Resources Investigations Report. 98-4148.
 
Sameie M. and Malekian A. (2010). Comarison of baseflow separating methods using the return number filter and PART model. proc. 2010, 6th National Seminar on Watershed Management Sciences and Engineering, Tarbiat Modarres University, Iran [In Persian].
 
Santhi C., Allen M. P., Muttian R. S., Arnold J. G. and Tuppad P. (2008). Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. J. Hydrol., 351, 139–153.
 
Shirzadi A., Chapi K. and Fathi P. (2012). The Estimating of Synthetic Unit Hydrograph Using Regional Flood Analysis and Geomorphologic Parameters (Case Study: Kanisavaran and Marenj Watersheds, Kurdistan). J. Sci. Technol. Agric. Natur. Res., 15(58), 231-240 [in Persian].
 
Smakhtin V. and Watkins D. (1997). Low flow estimation in South Africa, WRC 494, 125-132.
Soltani A. and Soltani M. (2018). Assessment of base flow separation methods in Karaj dam watershed. J. Environ. Water. Eng., 4(3), 216–228 [in Persian].
 
Szilagyi J. (2004). Heuristic continuous baseflow separation. J. Hydrol. Eng., 9(4), 311-318.
 
Tallaksen L. M. (1995). A review of base flow recession analysis. J. Hydrol., 65, 349–370.
 
Tamaskani A., Zakerinia. Hezarjeribi A. and Dehghani A. A. (2013). Comparison of Base Flow separation methods from daily flow hydrograph (Case study: Upstream of Boostan dam catchment In Golestan province). J. Water. Soil. Conser., 206, 127-145 [In Persian].
 
Teimouri M., Ghanbarpour M. R., Bashirgonbad M., Zolfaghari M. and Kazemikia S. (2011). Comparison of baseflow index in hydrograph separation with different methods in some rivers of West Azarbaijan Province. J. Sci. Technol. Agric. Natur. Res., 15(57), 219-228 [In Persian].
 
Zare Bidaki R., Mahdianfard M., Honarbakhs A. and Zeinivand H. (2015). Base Flow Estimation in Tireh Dorood River in order to Environmental Flow Assessment. Iran. J. Ecohydrol., 2(3), 275-287 [In Persian].