کاربرد برنامه‌ریزی بیان ژن در پیش بینی خشکسالی ( مطالعه موردی: ایستگاه سینوپتیک تبریز)

نوع مقاله: مقاله اصلی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی منابع آب، دانشکده کشاورزی، دانشگاه ارومیه. ارومیه. ایران

2 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه. ارومیه. ایران

3 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه. ارومیه. ایران

4 استادیار، گروه مهندسی عمران، دانشکده مهندسی عمران، دانشگاه صنعتی ارومیه. ارومیه. ایران

چکیده

پیکره آبی دریاچه ارومیه در سال­های اخیر به­ دلایل مختلف از قبیل خشک­سالی­های متوالی با کاهش شدید سطح و حجم روبرو شده است. بنابراین، در این پژوهش وضعیت خشک­سالی در ایستگاه سینوپتیک تبریز به­ عنوان یکی از ایستگاه­های مهم حوزه آبخیز دریاچه ارومیه در مقیاس­های زمانی مختلف با استفاده از شاخص بارش- تبخیر و تعرق استاندارد شده (SPEI) و مدل برنامه ­ریزی بیان ژن (GEP) مورد بررسی قرار گرفت. برای این منظور از شاخص SPEI در مقیاس­های زمانی 1، 3، 6، 12، 24 و 48 ماهه طی دوره­ی آماری 53 ساله برای پایش وضعیت خشک­سالی در این ایستگاه استفاده شد. نتایج نشان داد سه دوره طولانی­ مدت خشک­سالی مربوط به سال­های 1963-1961، 1992-1986 و 2009-1997 در طول دوره آماری وجود دارد. سپس با استفاده از سری زمانی مقادیر SPEI در 5 مدل ورودی با تأخیرهای یک تا 5 ماهه و مدل GEP نسبت به پیش­بینی خشک­سالی اقدام گردید. نتایج نشان داد که دقت پیش­بینی­ مدل GEP با افزایش مقیاس محاسبه SPEI رابطه مستقیم دارد و با افزایش مقیاس زمانی SPEI، دقت پیش­بینی افزایش پیدا می­کند به­ نحوی که ضریب همبستگی در مرحله آزمون در مقیاس یک ماهه (SPEI1) از 203/0 به 988/0 در مقیاس 48 ماهه (SPEI48) و دقت کلی مدل نیز در SPEI1 از 1/57 درصد به 2/94 درصد در SPEI48 رسید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Gene Expression Programming in Drought Prediction (Case Study: Tabriz Synoptic Station)

نویسندگان [English]

  • Abbas Abbasi 1
  • Keivan Khalili 2
  • Javad Behmanesh 3
  • Akbar Shirzad 4
1 PhD Scholar, Department of Water Resources Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Assist. Professor, Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Assoc. Professor, Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
4 Assist. Professor, Department of Civil Engineering, Faculty of Civil Engineering, Urmia University of Technology, Urmia, Iran
چکیده [English]

The water body of Urmia Lake in recent years has been faced with a significant reduction in surface area and volume due to various reasons such as successive droughts. Therefore, in this study, the situation of drought was evaluated at the synoptic station of Tabriz as one of the important stations of Urmia Lake basin in different time scales using the standardized precipitation-evapotranspiration index (SPEI) and the gene expression programming (GEP) model. For this purpose, the SPEI index was used for drought monitoring at 1, 3, 6, 12, 24, and 48 months during the 53-year statistical period. The results showed that three long periods of drought related to the years 1961-1963, 1986-1992, and 1997-2009 are available during the statistical period. According to the results, the prediction accuracy is directly related to increasing the scale of SPEI and increased by increasing the scale of SPEI, so that the correlation coefficient in the test stage in the one-month scale (SPEI1) increased from 0.203 to 0.988 at 48-month scale (SPEI48) and the overall accuracy of the model increased from 57.1 in SPEI1 to 94.2 % in SPEI48.

کلیدواژه‌ها [English]

  • monitoring
  • prediction
  • Drought
  • Urmia Lake
  • Intelligent Model
Abramopoulos F., Rosenzweig C. and Choudhury B. (1988). Improved ground hydrology calculations for global climate models (GCMs): Soil water movement and evapotranspiration. Climate., 1, 921-941.

 

Abramovitz M. and Stegun I. (1965). Handbook of mathematical functions. Dover Publications, New York.

 

Allen R. G., Pereira L. S., Raes D. and Smith M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage paper. 56 FAO, Rome 300:D05109.

 

Behmanesh J. and Mehdizadeh S. (2017). Estimation of soil temperature using gene expression programming and artificial neural networks in a semiarid region. Environ. Earth Sci., 76(2), 76.

 

Dasilva V. D. P. R. (2004). On climate variability in northeast of Brazil. J. Arid Environ., 58, 575-596.

 

Danande Mehr A., Kahya E. and Ozger M. (2014). A gene–wavelet model for long lead time drought forecasting. J. Hydrol., 517, 691-699.

 

Delju A., Ceylan A., Piguet E. and Rebetez M. (2013). Observed climate variability and change in Urmia Lake Basin, Iran. Theor. Appl. Climat., 111, 285-296

 

Edwards D. C. and McKee T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales. Atm. Sci. Paper, 634, 1-30.

 

Gholamzadeh M., Morid S. and Delavar M. (2011). Application of drought early warning system for operation of Zayandehrud Dam. J. Water Soil Sci., 15, 35-48 [In Persian].

 

Hernandez E. A. and Uddameri V. (2014). Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas. J. Environ. Earth Sci., 71, 2491-2501.

 

Hosking, J. R. M. (1990). L-Moments: analysis and estimation of distribution using linear combinations of order statistics. J. Royal Stat. Soc. Series B., 52(1), 105-124.

 

Hosseini-Moghari S. M. and Araghinejad S. (2016). Application of statistical, fuzzy and perceptron neural networks in drought forecasting (Case study: Gonbad-e Kavous Station). Water Soil (Agri. Sci. Technol.), 30, 247-259 [In Persian].

 

Jahangir M. H., Khoshmashraban M. and Yousefi H. (2015). Drought monitoring with Standard Precipitation Index (SPI) and drought forecasting with multi-layers perceptron (Case study: Tehran and Alborz Provinces). Iran. J. Ecohydrol., 2, 417-428 [In Persian].

 

Koza J.R. and Poli R. (2005). Genetic programming. In:  Search Methodologies. Springer, pp 127-164.

 

Labudova L., Schefczyk L. and Heinemann G. (2014). The comparison of the SPI and the SPEI using COSMO model data in two selected Slovakian river basins. In: EGU General Assembly Conference Abstracts.

 

Maca  P. and Pech  P. (2016). Forecasting SPEI and SPI drought indices using the integrated artificial neural networks. Comput. Intell. Neurosci., Article 2016.

 

Mishra A. and Desai V. (2006). Drought forecasting using feed-forward recursive neural network. Ecol. Model., 198, 127-138.

 

Mostafazadeh R., Shahabi M. and Zabihi M. (2015). Analysis of meteorological drought using triple diagram model in the Kurdistan Province, Iran. J. Geogr. Plan. Space Quart., 17, 129-140 [In Persian].

 

Potop V. and Možný M. (2011). Examination of the effect of evatranspiration as an output parameter in SPEI drought index. Microclimate and Mesoclima of Landscape Structures and Anthropogenic Environments: Collection of Abstracts from the International Conference: Rock Mill 2.-4.2.

 

Soltani A., Gorbani M., Fakheri Fard A., Darbandi S. and Farsadizadeh D. (2011). Genetic programming and its application in rainfall-runoff modeling. Water Soil Sci., 20, 62-71 [In Persian].

 

Stagge J. H., Tallaksen L. M., Gudmundsson L., Van Loon A. F. and Stahl K. (2015). Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climat., 35, 4027-4040.

 

Tajbakhsh S., Eisakhani N. and Fazl Kazemi A. (2015). Assessment of meteorological drought in Iran using standardized precipitation and evapotranspiration index (SPEI). Earth Space Phys., 41, 313-321 [In Persian].

 

Thornthwaite C. W. (1948). An approach toward a rational classification of climate. Geogr. Rev., 38, 55-94.

 

Törnros T. and Menzel L. (2014). Addressing drought conditions under current and future climates in the Jordan River region. Hydrol. Earth Sys. Sci., 18, 305-318.

 

Vicente-Serrano S. M, Beguería S. and López-Moreno J. I. (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Climate 23, 1696-1718

 

Zareabyaneh H., Ghobaeisoogh M. and Mosaedi A. (2016) Drought monitoring based on standardized precipitation evaoptranspiration index (SPEI) under the effect of climate change. Water Soil (Agri. Sci. Technol.) 29, 374-392 [In Persian].