کاربرد نانوزیست‌حسگرها در تشخیص و تعیین مقدار عوامل بیماری‌زا درآب

نوع مقاله: مقاله مروری

نویسندگان

1 گروه شیمی، دانشکده علوم، دانشگاه قم، قم، ایران

2 گروه شیمی، دانشکده ی علوم، دانشگاه قم، قم، ایران

3 گروه مهندسی شیمی، دانشکده ی مهندسی، دانشگاه قم، قم، ایران

4 مرکز کنترل کیفیت و بهداشت آب و فاضلاب، شرکت آب و فاضلاب استان قم، قم

چکیده

در فرآیند تصفیه یا گندزدایی آب تشخیص سریع و پایش عوامل بیماری­زا از جمله باکتری­ها و ویروس­ها به­عنوان شاخص­هایی مهم در کنترل کیفیت آب از اهمیت ویژه­ای برخوردار است. از طرفی، پایش و اندازه­گیری پیوسته و تشخیص عوامل بیماری­زا با مشکلاتی از جمله پایین بودن غلظت آن­ها در آب و ناکافی بودن حساسیت روش­های موجود، پیچیده بودن زمینه­ی شیمیایی آب و عدم گزینش­پذیری کافی روش­های فعلی، و نیز عدم کارآمدی این روش­ها در تشخیص سریع و پایش پیوسته و ارزان عوامل بیماری­زا همراه بوده است. این موضوع اهمیت و لزوم توجه به علوم و فن­آوری­های جدید را در ساخت حسگرهای زیستی به­منظور دست­یابی به حساسیت، سرعت پاسخ، و گزینش­پذیری بیش­تر نشان می­دهد. در این مقاله به­طور مختصر رویکرد جدید علوم نانو و کاربرد مواد نانوساختاری در طراحی و ساخت حسگرهای زیستی جدید به­منظور تشخیص و پایش عوامل بیماری­زا در آب معرفی شده و مثال­هایی نیز از کاربرد نانوزیست­حسگرها ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Nano-biosensors in Detection and Determination of Pathogens in Water

نویسندگان [English]

  • Mojtaba Hadi 1
  • Ali Ehsani 2
  • Mehdi Sedighi 3
  • Reza Ansari Tadi 4
1 Department of Chemistry, Faculty of Sciences, University of Qom, Qom, Iran
2 Department of Chemistry, Faculty of Sciences, University of Qom, Qom, Iran
3 Department of Chemical Engineering, Faculty of Engineering, University of Qom, Qom, Iran
4 Quality Control Department, Qom Province Water and Wastewater Company, Qom, Iran
چکیده [English]

In water disinfection and treatment, rapid detection and monitoring of pathogens such as bacteria and viruses, as important water quality indices, are of prime importance. On the other hand, continuous monitoring and detection of pathogens have encountered the problems such as low concentration of bacteria and viruses in water, low sensitivity of the conventional detection methods, complex sample matrices and insufficient selectivity of the conventional methods, and inability of these methods in fast and cheap detection and continuous monitoring of pathogens. These indicate the importance of considering new sciences and technologies in fabrication of biosensors in order to achieve higher sensitivity, response rapidity, and selectivity. In this paper, briefly, new nanoscience approach and application of nanostructured materials in design and fabrication of nanobiosensors in order to detecting and monitoring of bacteria and viruses in water have been introduced and some examples of the applications of nanobiosensors have been also presented.  

کلیدواژه‌ها [English]

  • nano-biosensor
  • nano-structured materials
  • Pathogens
  • water quality control
Arcidiacono S., Pivarnik P., Mello C. M. and Senecal A. (2008). Cy5 labeled antimicrobial peptides for enhanced detection of Escherichia coli O157: H7. Biosens. Bioelect., 23,1721-1727.

 

Comparelli R., Curri M. L., Cozzoli P. D. and Striccoli M. (2007). Optical biosensing based on metal and semiconductor colloidal nanocrystals. Nanotech. Life Sci., C.S. Kumar (Ed)., doi:10.1002/9783527610419.ntls0086

 

Dungchai W., Siangproh W., Chaicumpa W., Tongtawe P. and Chailapakul O. (2008) Salmonella typhi determination using voltammetric amplification of nanoparticles: a highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label. Talanta, 77(2), 727-732.

 

El-Boubbou K., Gruden C. and Huang X. (2007). Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc., 129, 13392-13393.

 

Hadi M. Sedighi M. and Ehsani A. (2016). Evaluation of nanotechnology methods in improving and increasing the efficiency of water and wastewater treatment processes. Final Report, Water and Wastewater Co. Qom, Iran [In Persian].

 

Homann M. and Göringer H. U. (1999). Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic acids Res., 27, 2006-2014.

 

Huang Y-F., Wang Y-F. and Yan X-P. (2010). Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ. Sci. Technol., 44, 7908-7913.

 

Koedrith P., Thasiphu T., Weon J-I., Boonprasert R., Tuitemwong K. and Tuitemwong P. (2015). Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. Sci. World J., 2015, 510982.

 

Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L. and Muller R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 108, 2064-2110.

 

Liébana S., Brandão D., Alegret S. and Pividori M. I. (2014). Electrochemical immunosensors, genosensors and phagosensors for Salmonella detection. Analyt. Methods, 6, 8858-8873

 

Medintz I. L., Uyeda H. T., Goldman E. R. and Mattoussi H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 4, 435-446.

 

Merkoçi A. (2007). Electrochemical biosensing with nanoparticles. FEBS J., 274, 310-316.

 

Mukhopadhyay B., Martins M. B., Karamanska R., Russell D. A. and Field R. A. (2009). Bacterial detection using carbohydratefunctionalised CdS quantum dots: a model study exploiting E. coli recognition of mannosides. Tetrahedron Lett., 50, 886889.

 

Niikura K., Nagakawa K., Ohtake N., Suzuki T., Matsuo Y., Sawa H. and Ijiro K. (2009). Gold nanoparticle arrangement on viral particles through carbohydrate recognition: a non-cross-linking approach to optical virus detection. Biocon. Chem., 20, 18481852.

 

Olsvik O., Popovic T., Skjerve E., Cudjoe K. S., Hornes E., Ugelstad J. and Uhlen M. (1994). Magnetic separation techniques in diagnostic microbiology. Clinic. Microb. Rev., 7, 43-54.

 

Qu X., Alvarez P. J. and Li Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Res., 47, 3931-3946.

 

Shen Z., Huang M., Xiao C., Zhang Y., Zeng X. and Wang P. G. (2007). Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Analyt. Chem., 79, 23122319.

 

So H-M., Park D-W., Jeon E-K., Kim Y-H., Kim B-S., Lee C-K., Choi S-Y., Kim S-C., Chang H. and Lee J-O. (2008) Detection and titer estimation of Escherichia coli using aptamer‐ functionalized single walled carbon‐ nanotube field‐ effect transistors. Small, 4, 197-201.

 

Vikesland P. J. and Wigginton K. R. (2010). Nanomaterial enabled biosensors for pathogen monitoring-a review. Environ. Sci. Technol., 44, 3656-3669.

 

Wang J. (2007). Nanoparticle‐ based electrochemical bioassays of proteins. Electroanal., 19, 769-776.

 

Wang L., Zhao W., O'Donoghu M. B., Tan W. (2007). Fluorescent nanoparticles for multiplexed bacteria monitoring. Biocon. Chem., 18, 297-301

 

Wen C-Y., Jiang Y-Z., Li X-Y., Tang M., Wu L.-L., Hu J., Pang D. W. and Zeng J-B. (2017) Efficient enrichment and analyses of bacteria at ultralow concentration with quick-response magnetic nanospheres. ACS Appl. Mater. Interfaces., 9, 94169425.

 

Yan J., Estévez M. C., Smith J. E., Wang K., He X., Wang L. and Tan W. (2007). Dyedoped nanoparticles for bioanalysis. Nano Today, 2, 44-50.

 

Yang L. and Li Y. (2006). Simultaneous detection of Escherichia coli O157 ∶ H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst, 131, 394-401.

 

Zhao X., Hilliard L. R., Mechery S. J., Wang Y., Bagwe R. P., Jin S. and Tan W. (2004). A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceed. National Academy Sci., 101, 15027-15032.