استفاده از رویکرد ترکیبی گاما- ماشین بردار پشتیبان به‌منظور پیش‌بینی بلندمدت آورد رودخانه در حوضه زرینه‌رود

نوع مقاله: مقاله اصلی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی منابع آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران؛ دانشجوی دکتری، گروه مهندسی منابع آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 استادیار گروه مهندسی منابع آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 استاد گروه مهندسی منابع آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

پیش‌بینی آورد رودخانه از موضوعات مهم در برنامه‌ریزی منابع آب و مدیریت عرضه و تقاضای آن محسوب می‌شود. از این­رو در طراحی، برنامه‌ریزی، مدیریت و بهره‌برداری از تأسیسات آبی و همچنین مدیریت شرایط بحرانی از قبیل سیلاب و خشکسالی موردتوجه پژوهشگران است. در تحقیق حاضر با استفاده از یک رویکرد ترکیبی بر مبنای آزمون گاما و مدل ماشین­بردار پشتیبان (GSVM)، پیش‌بینی میزان آورد،  بررسی­شد. بدین منظور با استفاده از آزمون گاما از ترکیبات مختلف 10 متغیر هواشناسی و هیدرولوژیکی در سطح حوضه بهترین ترکیب ممکن برای پیش‌بینی آورد انتخاب­شد. سپس باتوجه به بهترین ترکیب پیش‌بینی­کننده‌ها، آورد پتانسیل رودخانه با استفاده از ماشین­بردار پشتیبان پیش‌بینی­شد. مقایسه مقادیر پیش‌بینی­شده و مشاهداتی بیانگر کارایی مطلوب رویکرد ترکیبی در پیش‌بینی آورد طبیعی حوضه و تنظیم برنامه مدیریتی حوضه بر مبنای آن است. براین اساس دقت کلی مدل در پیش‌بینی سطوح مدیریتی خشک­سالی بر مبنای آورد رودخانه زرینه‌رود برابر با 4/71 درصد، خطای برآورد دست بالا برابر 2/8 درصد و خطای برآورد دست پایین نیز 4/20 است. این نتایج دقت قابل قبول مدل GSVM در پیش‌بینی آورد در شرایط مختلف هیدرولوژیکی حوضه را نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Hybrid Gamma-SVM Approach for River Flow Prediction in Zarinehrud Basin

نویسندگان [English]

  • Abbas Abbasi 1
  • Mahid Delavar 2
  • Saeed Morid 3
1 M.Sc., Department of Water Resources Engineering, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran; PhD Scholar, Department of Water Resources Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Assist. Professor, Department of Water Resources Engineering, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
3 Professor, Department of Water Resources Engineering, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Prediction of river flow is an important issue in planning water resources and management of supply and demand in future conditions. Hence, it has attracted researchers’ notice due to its importancein the designing, planning, management and operation of water facilitiesand also management the critical conditions such as flood and drought. In the present study, it was attempted to improve Zarinehrud river inflow prediction for use in water resource planning using a hybrid approach based on gamma test and supporting vector machine model (GSVM). For this purpose, the best possible combination of predictors was selected from the different combinations of 10 meteorological and hydrological variables in the basin. Then, based on the best combination of predictors, the potential of river inflow was predicted using a support vector machine. Comparison of predicted and observed flow indicated the good performance of hybrid approach in prediction of potential river inflow for application in basin management plans. In this case, the overall accuracy of the model to predict drought management levels based on Zarinehrud flow is 71.4%, and the upper and under estimation error are 8.2 and 20.4% respectively. These results show the acceptable precision of GSVM model for flow prediction in different hydrological situations of basin.
Application of Hybrid Gamma-SVM Approach for River Flow Prediction in Zarinehrud Basin

کلیدواژه‌ها [English]

  • Gamma Test
  • Flow Prediction
  • Zarinehrud
  • Support Vector Machine
Asefa T., Kemblowski M. W., Mckee M. and Khalil A. (2006). Multi-time scale stream flow prediction: the support vector machine approach. J. Hydrol., 318, 7-16.

 

Behzad M., Asghari K., Eazi M. and Pallhang M. (2009). Generalization performance of support vector machines and neural networks in runoff modeling. Expert Sys. Appl., 36(4), 7624-7629.

 

Chu H., Wei J., Li T. and Jia K. (2016). Application of support vector regression for mid- and long-term runoff forecasting in "Yellow River Headwater" region. HIC.2016. 12th Int. Conf. Hydroinformatics, Procedia Engineering 154,1251 – 1257.

 

Dibike Y. B., Velickov S., Solomatine D. and Abbott M. B. (2001). Model induction with support vector machines: introduction and applications. J. Comput. Civil Eng., 15(3), 208–216.

 

Gholamzade M., Morid M. and Delava M. (2011). Use of early drought warning system for Zayandeh Rood Dam Operation. J. Agri. Sci. Technol. Water Soil Sci., 56, 35-47 [In Persian].

 

Guven A. (2009). Linear genetic programming for time-series modeling of daily flow rate. J. Earth Syst. Sci., 118(2),157-173.

 

Hamel L. (2009). Knowledge Discovery with Support Vector Machines. Hoboken NJ. John Wiley. Jones A. J. (2004). New tools in non-linear modeling and prediction. Comput. Manag. Sci., 1(2), 109-149.

 

Kakaei-Lefdani E., Moghadamnia A., Ahmadi A. and Ebrahimi H. (2014). Evaluation of the effect of pre-processing of input variables in the model of supporting vector machine by gamma proton method in order to precipitate suspended sediment volume. J. Grassland Watershed, 67(2), 289-303 [In Persian].

 

Kelmes V. (1973). Watershed as semi infinitestorage reservoirs. J. Irrig. Drain., 99, 477-491.

 

Kiani Falavarjani M., Ahmadi A. and Gorji M. (2011). Long-term Prediction of Runoff into the Zayandehrood Dam Reservoir Using Large-scale Climatic Signals and intelligent Computing Methods. 6th Scientific Congress of Civil Engineering, Semnan University, Semanan [In Persian].

 

Lin J.Y., Cheng C.T. and Chau K.W. (2006). Using support vector machines for longterm discharge prediction. Hydrol. Sci. J., 51(4), 599-612.

 

Liong S. Y. and Sivapragasam C. (2002). Flood stage forecasting with support vector machines. Am. Water Resour. Assoc., 38, 173-186.

 

Moghaddamnia A., Ghafari Gousheh M., Piri J., Amin S. and Han D. (2009a). Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Resour., 32(1), 88-97.

 

Moghaddamnia A., Remesan R., Hassanpour Kashani M., Mohammadi M., Han D. and Piri J. (2009b). Comparison of LLR, MLP, Elman, NNARX and ANFIS Models - with a case study in solar radiation estimation. J. Atm. Solar-Terrest. Phys., 71, 975-982.

 

Nayak P. C., Sudheer K. P., Rangan D. M. and Ramasastri K. S. (2004). A neuro fuzzy computing technique for modeling hydrological time series. J. Hydrol., 291(2), 52-66.

 

Noori R., Khakpour A., Dehghani M. and Farokhnia A. (2011). Monthly stream flow prediction using support vector machine based on principal component analysis. J. Water Wastewater, 22(1), 118-123 [In Persian].

 

Remesan R., Shamim M.A. and Han D. (2008). Model data selection using gamma test for daily solar radiation estimation. Hydrol. Proc., 22, 4301-4309.

 

Riahi S., Pourbasheer E., Ganjali M.R. and Norouzi P. )2009(. Investigation of different linear and nonlinear chemometric methods for modeling of retention index of essential oil components: concerns to support vector machine. J. Hazard. Mater., 166(2), 853-859.

 

Sharifi A. R., Dinpashoh Y., Fakheri-Fard. and Moghaddamnia A. R. (2013). Optimum combination of variables for runoff simulation in Amameh Watershed using gamma test. Water Soil J., 23(4), 59-72 [In Persian].

 

Silverman D. and Dracup J. A. (2000). Artificial neural network and long range precipitation rediction California. J. Appl. Meteorol., 39(1), 57-66.

 

Wan Jaafar W. Z., Liu J. and Han D. (2011). Input variable selection for median flood regionalization. Water Resour. Res., 47, 118.

 

Working Group on Sustainable Management of Water Resources and Agriculture (WGSMWRA), Regional Council of Lake Urmia Basin Management. (2012). Drought risk management plan for lake urmia basin, Tarbiat Modares university and Iranian conservation of wetlands plan, Volume 8 [In Persian].

 

 Yu P.S., Chen S.T. and Chang I.F. (2006). Support vector regression for real-time flood stage forecasting. J. Hydrol., 328, 704-716.