بررسی مقایسه‌ای ایزوترم‌های جذب سطحی سرب توسط جاذب‌های نانوفیبرکیتین و نانوفیبرلیگنوسلولز از محلول‌های آبی

نوع مقاله: مقاله اصلی

نویسندگان

1 کارشناسی ارشد،گروه آلودگی محیط زیست، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استادیار، گروه آلودگی محیط زیست، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استادیار، گروه مهندسی چوب و کاغذ، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

ایزوتوپ‌های متعدد  فلز سنگین سرب از طریق پساب صنایع وارد محیط‌های آبی می‌شود و فرآیند جذب سطحی با نانو جاذب‌های طبیعی، یکی از روش‌های مناسب برای تصفیه آب می‌باشد. هدف از انجام این مطالعه بررسی سازوکار جذب سرب با استفاده از بررسی ایزوترم جذب نانوالیاف کیتین و لیگنوسلولز است. شرایط آزمایش برای دو جاذب به­طور کامل یکسان در نظر گرفته شد. جهت بررسی توان جذب این فلز، متغیرهایی همچون pH، غلظت اولیه سرب و درصدهای متفاوتی از دوز جاذب مورد بررسی قرار گرفتند. برای مطالعه ایزوترم جذب مدل‌های دو پارامتری لانگمویر، فرندلیچ، تمکین و دابنین-رادوشکویچ و مدل‌های سه پارامتری ردلیچ پترسون و سیپس بررسی و مقایسه شدند. بالاترین ضریب همبستگی (R2) به‌عنوان بهترین مدل ایزوترم جذب سرب انتخاب گردید. با توجه به نتایج به‌دست آمده، از داده‌های نانوالیاف کیتین، داده‌ها با دو مدل سیپس (R2=9992/0) و لانگمویر (R2=9996/0) مطابقت بیش‌تری داشتند. تطابق بهتر داده‌ها با دو مدل سیپس و لانگمویر با توجه به بیش‌تر بودن ضریب R2 بیانگر همگن بودن ساختار جاذب و تک‌لایه‌ای بودن فرایند جذب سطحی نانوالیاف کیتین است. برای نانوالیاف لیگنوسلولز بیش‌ترین میزان ضریب همبستگی برای مدل لانگمویر (9997/0) و ردلیچ - پترسون (9338/0) به‌دست آمد. بنابراین داده‌های این جاذب با هر دو مدل مطابقت داشته اما با مدل لانگمویر بهتر توصیف شدند. این امر بیانگر همگنی سطح جاذب بوده است. قرارگیری پارامتر RL به‌دست آمده از مدل لانگمویر دو جاذب در محدوده صفر و یک، بیانگر مطلوب بودن سیستم جذبی این مدل است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparative Study of the Absorption Isotherms of Lead by Lignocellulose Nano-Fibers (LCNFS) and Chitin Nano-Fibers (CNFS) from Aqueous Solutions

نویسندگان [English]

  • Saeedeh Rastgar 1
  • Hassan Rezaei 2
  • Hossein Yousefi 3
1 M.Sc., Department of Environmental Pollution, Faculty of Agriculture, University of Agricultural Sciences and Natural Resources (GUASNR), Gorgan, Iran
2 Assist. Professor, Department of Environmental Pollution, Faculty of Agriculture, University of Agricultural Sciences and Natural Resources(GUASNR), Gorgan, Iran
3 Assist. Professor, Department of Wood and Paper Engineering, Faculty of Agriculture, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Gorgan, Iran
چکیده [English]

Multiple isotopes of lead, heavy metal, are introduced into the aquatic environment through industrial wastewater. Absorption process using natural nano-adsorbents is a suitable method to treat water. The aim of this study was to investigate the mechanism of lead absorption by investigating the isotherm of LCNFs and CNFs adsorption. The experimental conditions considered for two absorbents were completely identical. Variables such as pH, initial concentration of lead and adsorbent dose were investigated to determine the absorption of lead. In order to study adsorption isotherms, the Langmuir, Freundlich, Tamkin, and Dubinin-Radushkevich models were compared and the three-parameter models of Redlich Petersen and Sipes were compared and the highest correlation coefficient (R2) was selected as the best lead isotherm model. According to the results obtained from the CNFs, the data were more consistent with the two models of Sipes (R2 = 0.9992) and Langmuir (R2 = 0.9996). Better matching of the data with the two Sipes and Langmuir models, due to the higher coefficient of R2, indicates the homogeneity of the adsorbent structure and the single-layered nature of the absorption of CNFs, and the highest correlation coefficient for the Langmuir model is for the LCNFs (0.9997) and Redlich-Patterson (0.9338). Therefore, the adsorbent data were consistent with both models, but were better described by the Langmuir model, which shows homogeneity of the adsorbent level. The positioning of the RL parameter obtained from the Langmuir model of two adsorbents in the range of 0 and 1 showed that the absorption system of this model is suitable.

کلیدواژه‌ها [English]

  • Isotherm
  • Adsorption
  • Adsorbent
  • Nano-fibers
  • Heavy metal
Ahmad A. L., Sumathi S., and Hameed B. H. (2005). Adsorption of residue oil from palm oil mill, effluent using powder and flake chitosan: equilibrium and kinetic studies. Water Res., 39(12), 2483–2494.
 
Alam Khan T., Mukhlif A. A., Khan, E. A., and Sharma D. (2016). Isotherm and kinetics modeling of Pb(II) and Cd(II) adsorptive uptake from aqueous solution by chemically modified green algal biomass. Model. Earth Sys. Environ., 2, 117.
 
Alizadeh R., Abedini S., Nabibidehnedi G., and Amoabedini G. (2010). Removal of lead from wastewater battery industries using magnetic nanoparticles of iron. Iranian J. Chem. Chem. Eng. (IJCCE)., 30(1), 71-77 [In Persian].
 
Azouaou N., Belmedani M., Mokaddem H., and Sadaui Z. (2013). Adsorption of lead from aqueous solution onto untreated orange barks. J. Chem. Eng. Trans., 32, 55-60.
 
Chu K. H. (2002). Removal of copper from aqueous solution by chitosan in prawn shell:Adsorption equilibrium and kinetics. J. Hazard. Mater., 90(1), 77-95.
 
Dotto G. L., Santos J. M. N., Tanabe E. H., Bertuol E. L., Foletto E. L., Lima E. C. and Pavan F. A. (2017). Chitosan/polyamide nanofibers prepared by Forcespinning technology: A new adsorbent to remove anionic dyes from aqueous solutions. J. Clean. Product., 144(15), 120-129.
 
Forutan R., Ehsandoost E., Hadipour S., Mobaraki Z., Saleki M. and Mohebbi G. (2016). Kinetic and equilibrium studies on the adsorption of lead by the chitin of pink shrimp (Solenocera melantho). Entomol. Appl. Sci. Lett., 3, 20–26.
 
Ge H., Hua T. and Chen X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. J. Hazard. Mater., 308, 225-232.
 
Guo L., Duban B. and Zhang L. (2016). Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. J. Nano Res., 9(7), 2149–2161.
 
Igberase E. and Osifo P. O. (2015). Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution. J. Indust. Eng. Chem., 26, 340–347.
 
Kardam A., Raj K. R., Srivastava S. and Srivastava M. M. (2014). Nanocellulose fibers for biosorption of cadmium nichkel, and lead ions from aqueous solution. J. Clean Technol. Environ. Policy., (16), 385-393.
 
Karthik R. and Meenakshi S. (2016). Biosorption of Pb(II) and Cd(II) ions from aqueous solution using polyaniline/chitin composite. J. Separa. Sci. Technol., 51(5), 733-742.
 
Khedr S. A., Shouman M. A. and Attia A. A. (2013). Adsorption studies on the removal of cationic dye from shrimp shell using chitin. J. Biointer. Res. Appl. Chem., 3(1), 507-519.
 
Kiarostami V., Ahmadi J., Saremi E. and Hosseinpour M. (2012). Removal of Pb(II) ions from aqueous solutions using Fe2O3CuO. J. Appl. Res. Chem., 7(3), 83-92 [In Persian].
 
Labidi A., Salaberria A. M., Fernandes S. C., Labidi J. and Abderrabba M. (2016). Adsorption of copper on chitin-based materials: Kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng., 65, 140148.
 
Largitte L., Burdey T., Tant T. and Dumensnill P. (2016). Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. J. Micropor. Mesopor. Mater., 219, 265-275.
 
Li Z., Chen J. and Ge Y. (2017). Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes. Chem. Eng. J., 308, 809–817.
 
Manshouri M., Yazdanbakhsh A. R., Daraei H. and Noorisepehr M. (2016). Lead removal from aqueous solution using ostrich feathers modified by hydrogen peroxide. Iranian J. Hormozgan Med., 17(4), 308-315 [In Persian].
 
Naghizadeh A., and Momeni F. (2015). Evaluation of graphen oxide nanoparticles efficacy inchromium and lead removal from aqueous solutions. J. Birjand Univ. Med. Sci., 22(1), 27-38 [In Persian].
 
Nasiruddin khan M., Bhutto S., Wasim A. A. and Khushid S. (2015). Removal studies of lead activated carbon derived from lignocellulose mangifera indicaseed shell. J. Toxicol. Environ. Chem., 57(24), 11211-11220.
 
Saman N., Johari, K., Songa S. T., Konga, H., Cheua, S. C. and Mat H. (2017). High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass. Chemosphere, 171, 19-30.
 
Sanati A. M., Bahramifar N., Mehraban Z. and Younesi H. (2013). Lead removal from aqueous solution using date-palm leaf ashin batch system. Water Wastewater J., 25(4), 51-58 [In Persian].
 
Shariful I. M. D., Sharif S. B., Lee J. J., Habiba U., Ang B. C. and Amalina M. A. (2107). Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohydrate Poly., 157, 57-64.
 
Shukla A., Zhang Y. H., Dubey P., Margrave J. L., and Shukla S. S. (2002). The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater., 95(1-2), 137-152.
 
Sposito A., Pagnanelli F., Lodi C. and Veglio F. (2001). Biosorption of heavy metals by Sphaerotilus natants: An equilibrium study at different pH and biomass concentration. J. Hydrometal., 60, 129-141.
 
Yan G. and Viraraghavan T. (2001). Heavy metal removal in a biosorption column by immobilized M.rouxii biomass. J. Bioresour. Technol., 78, 243-249.
 
Zhang X., and Rolandi M. (2017). Engineering strategies for chitin nanofibers. J. Mater. Chem. B Mater. Bio. Med., 5, 2547-2559.