مروری بر فناوریهای نوین در سنتز نانو ساختارهای مورداستفاده در تصفیه پسابها

نوع مقاله: مقاله مروری

نویسندگان

1 کارشناسی ارشد، گروه مهندسی معدن، دانشکده مهندسی معدن، دانشگاه تهران، تهران، ایران

2 استادیار، گروه مهندسی معدن، دانشکده مهندسی معدن، دانشگاه تهران، تهران، ایران

چکیده

در میان آلودگی‌های شناخته‌شده، آلودگی آب یکی از بزرگ‌ترین نگرانی‌هایی است که به‌شدت بقای موجودات زنده را تحت تأثیر قرار می‌دهد. در سال‌های اخیر افزایش فعالیت‌های صنعتی باعث تولید میزان بالای پساب‌های آلوده حاوی مواد سمی و خطرناک شده است که آلودگی آب‌ها را به دنبال دارد. این آلودگی باعث تأثیر بر زندگی انسان و حیوانات می‌شود. وجود آب سالم و عاری از آلودگی برای فعالیت‌های متعدد بیشترین محرک برای تحقیقات درزمینه تصفیه پساب‌ها است. برخی تلاش‌های صورت گرفته درزمینه کنترل آلودگی آب شامل شناورسازی، صاف­سازی، تبادل یون، انعقادسازی، رسوب و جذب است. از چندین سال قبل به دلیل قابلیت‌های گسترده فناوری نانو توجهات فراوانی به این علم در این زمینه  شده است. فناوری نانوکه مهندسی سیستم‌های عملکردی در مقیاس مولکول است به معنای توانمندی تولید مواد، ابزارها و سیستم‌های جدید با در دست گرفتن کنترل در سطوح مولکولی و اتمی و استفاده از خواص ذرات در ابعاد نانو هست. کاهش اندازه نانو ذرات منجر به افزایش سطح ذرات و ایجاد خواص ویژه‌ای خواهد شد که بر اساس سازوکار کوانتمی، این فرایند منجر به تغییر برخی از خواص فیزیکی و شیمیایی مواد و ایجاد خواص غیرمعمولی می‌شود که در موارد تصفیه پساب‌ها بسیار پرکاربرد است. تمرکز این پژوهش بیشتر درزمینه­های جذب سطحی توسط نانوذرات هست. از مهم‌ترین نانو ساختارهای کاربردی در این زمینه می‌توان به نانولوله‌های کربنی، نانو اکسیدهای فلزی اشاره کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

New Technologies in the Synthesis of Nano-Structures used in Wastewater Treatment- A Review

نویسندگان [English]

  • Negin Sarmadi 1
  • Mahdi Gharabaghi 2
  • Soheila Aslani 2
1 M.Sc., Department of Mining Engineering, Faculty of Mining Engineering, Tehran University, Tehran, Iran
2 Assist. Professor, Department of Mining Engineering, Faculty of Mining Engineering, Tehran University, Tehran, Iran
چکیده [English]

Nanotechnology is the engineering of functional systems on a molecular scale, which refers to the projected ability to construct materials, tools, and new systems via controlling individual atoms and molecules through the characteristics of particles of matter at the nano-meter scale. One of the main environmental applications of nanotechnology is in the wastewater treatment processes. Mining activities can lead to serious problems such as acidic waste production, heavy metals pollution, cyanide spills, and the pollution by organic pollutants. There are several techniques to eliminate the above pollutants from the wastewater including precipitation, ion exchange, membrane filtration technology, electrochemical methods, and the absorption process. Currently, absorption process is one of the most effective and economic techniques for wastewater treatment. Carbon nanotubes (CNT) and Nano metal oxides are flexible and reusable nanoscale structures, which make them more advantageous over the other nanostructures. Moreover, they have more applications due to their higher surface area in comparison with other particles. This review explains the application of these nanostructures in wastewater treatment.

کلیدواژه‌ها [English]

  • Nanotechnology
  • Wastewater
  • Adsorption
  • Carbon Nano Tubes
  • Nano Metal Oxide
Adschiri. T. (2007). Supercritical    hydrothermal synthesis of organic–inorganic hybrid nanoparticles. Chem. Lett., 36(10), 1188-1193.

 

Afkhami A., Saber-Tehrani M. and Bagheri H. (2010). Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J. Hazard. Mater., 181(1), 836-844.

 

Aghaie M., Gharbani P., Dastmalchi S., Monajjemi M. and Zare K. (2012). Comparison of 4chloro-2-nitrophenol adsorption on singlewalled and multi-walled carbon nanotubes. Iranian J. Environ. Health Sci. Eng. 9(1): 1.

 

Agouborde L. and Navia R. (2009). Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes. J. Hazard. Mater., 167(1), 536-544.

 

Ajayan P. M. and Zhou O. Z. (2001). Applications of carbon nanotubes. Carbon nanotubes, Springer: 391-425.

 

Ali I. and Aboul-Enein H. Y. (2005). Chiral pollutants: distribution, toxicity and analysis by chromatography and capillary electrophoresis, John Wiley & Sons.

 

Ali I., Asim M. and Khan T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag., 113, 170183.

 

Ali I., Khan T. A. and Asim M. (2011). Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Separ. Purif. Rev., 40(1), 25-42.

 

Álvarez-Torrellas S., Rodríguez A., Ovejero G. and J. García (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem. Eng. J., 283, 936-947.

 

Anitha K., Namsani S. and Singh J. K. (2015). Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study. J. Phys. Chem. A, 119(30), 8349-8358.

 

Badruddoza A. Z. M., Tay A. S. H., Tan P. Y., Hidajat K. and Uddin M. S. (2011). Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies. J. Hazard. Mater., 185(2), 1177-1186.

 

Bazrafshan E., Mostafapour F. K., Hosseini A. R., Raksh Khorshid A. and Mahvi A. H. (2012). Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J. Chem. Article ID 938374.

 

Bonini M., Baglioni P. and D. Chelazzi (2013). Inorganic nanomaterials: synthesis and properties: In Nanoscience for the conservation of works of art: 315-344.

 

Cao C. - Y., Cui Z.- M.., Chen C.- Q., Song W.-G. and Cai W. (2010). Ceria hollow nanospheres produced by a template-free microwaveassisted hydrothermal method for heavy metal ion removal and catalysis. J. Phys. Chem. C 114(21), 9865-9870.

 

Chen D.- H. and He X.- R. (2001). Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater. Res. Bull., 36(7), 1369-1377.

 

Chen Y.- H. and Li F.- A. (2010). Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J. Colloid Interface Sci., 347(2), 277-281.

 

Chilom G. and Rice J. A. (2013). Organic Pollutants in the Environment. eMagRes., 587596.

 

Comini E. (2006). Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta, 568(1), 28-40.

 

Cushing B. L., Kolesnichenko V. L. and C. J. O'Connor (2004). Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Reviews, 104(9), 38933946.

 

Engates K. E. and Shipley H. J. (2011). Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res., 18(3), 386-395.

 

Eriksson S., Nylén U., Rojas S. and Boutonnet M. (2004). Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl. Catal. A: General, 265(2), 207-219.

 

Gong, J. L., Wang, B., Zeng, G. M., Yang, C. P., Niu, C. G., Niu, Q. Y., Zhou W.J. and Liang, Y. (2009). Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater., 164(2), 1517-1522.

 

Grossl P. R., Sparks D. L.  and Ainsworth C. C. (1994). Rapid kinetics of Cu (II) adsorption/desorption on goethite. Environ. Sci. Technol., 28(8), 1422-1429.

 

Helmer R., Hespanhol I., Supply W. and Council S. C. (1997). Water pollution control: a guide to the use of water quality management principles, E & FN Spon, London.

 

Hu J., Chen G. and Lo I. M. C. (2006). Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J. Environ. Eng., 132(7), 709-715.

 

Khraisheh M. A. M., Al-degs Y. S. and McMinn W. A. M. (2004). Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J., 99(2), 177184.

 

Kong H., Gao C. and Yan D. (2004). Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soci., 126(2), 412-413.

 

Kramer R.  M., Li C., Carter D.  C., Stone M. O. and Naik R. R. (2004). Engineered protein cages for nanomaterial synthesis. J. Am. Chem. Soci., 126(41), 13282-13286.

 

Lai C.- H., Chen C. - Y., Wei B.-L. and Lee C.-W. (2001). Adsorptive characteristics of cadmium and lead on the goethite-coated sand surface. J. Environ. Sci. Health, Part A 36(5), 747-763.

 

Lazarević S., Janković-Č astvan I., Djokić V., Radovanovic Z., Janaćković D. and Petrovic R. (2010). Iron-modified sepiolite for Ni2+ sorption from aqueous solution: an equilibrium, kinetic, and thermodynamic study. J. Chem. Eng. Data, 55(12), 5681-5689.

 

Li Y.- H., Ding J., Luan Z., Di Z., Zhu Y., Xu C., Wu D. and Wei B. (2003). Competitive adsorption of Pb 2+, Cu 2+ and Cd 2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14), 2787-2792.

 

Li Y., Zhao J. and Han J. (2002). Self-propagating high temperature synthesis and magnetic properties of Ni0. 35Zn0. 65Fe2O4 powders. Bull. Mater. Sci., 25(4): 263-266.

 

Lin H. and Tiwari S. (2006). Localized charge trapping due to adsorption in nanotube field effect transistor and its field-mediated transport. Appl. Phys. Lett., 89(7), 073507.

 

Lou J. C., Jung M. J., Yang H. W., Han J. Y. and Huang W. H. (2011). Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs). J. Environ. Sci. Health, Part A, 46(12), 13571365.

 

Lu C. and Liu C. (2006). Removal of nickel (II) from aqueous solution by carbon nanotubes. J. Chem. Technol. Biotechnol., 81(12), 19321940.

 

Lu Y., Yin Y., Mayers B. T.and Xia Y. (2002). Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano lett., 2(3), 183-186.

 

Ma J., Yu F., Zhou L., Jin L., Yang M., Luan J., Tang Y., Fan H., Yuan Z. and Chen J. (2012). Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces, 4(11), 5749-5760.

 

Ma J., Zhuang Y. and Yu F. (2015). Facile method for the synthesis of a magnetic CNTs–C@Fe– chitosan composite and its application in tetracycline removal from aqueous solutions. Phys. Chem. Chem. Phys., 17(24), 1593615944. 

 

Ma X., Wang Y., Gao M., Xu H.,and Li G. (2010). A novel strategy to prepare ZnO/PbS heterostructured functional nanocomposite utilizing the surface adsorption property of ZnO nanosheets. Catal. Today, 158(3), 459-463.

 

Meagher R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion Plant Bio., 3(2), 153-162.

 

Mihoc G., Ianoş R. and Păcurariu C. (2014). Adsorption of phenol and p-chlorophenol from aqueous solutions by magnetic nanopowder. Water Sci. Technol., 69(2), 385-391.

 

Moradi O. (2013). Adsorption behavior of basic red 46 by single-walled carbon nanotubes surfaces. Fullerenes, Nanotubes Carbon Nanostruct., 21(4), 286-301.

 

Ncibi M. C. and Sillanpää M. (2015). Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J. Hazard. Mater., 298, 102110.

Nemerow N. L. and Dasgupta A. (1991). Industrial and hazardous waste treatment. New York.

Odom T. W., Huang J. L. and Lieber C. M. (2002). Single‐Walled Carbon Nanotubes. Annal. New York Academy Sci., 960(1), 203-215.

Patterson J. W. (1985). Industrial wastewater treatment technology. 2nd Edition, Butterworth Publishers, Stoneham.

Peng J., Hojamberdiev M., Xu Y., Cao B., Wang J. and Wu H. (2011). Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magnet. Magnetic Mater., 323(1), 133-137.

Petcharoen K. and Sirivat A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B, 177(5), 421-427.

Poizot P., Laruelle S., Grugeon S., Dupont L. and Tarascon J. M. (2000). Nano-sized transition metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496499.

Qadri S., Ganoe A. and Haik Y. (2009). Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J. Hazard. Mater., 169(1), 318-323.

Rao C. N. R., Müller A. and Cheetham A. K. (2006). The chemistry of nanomaterials: synthesis, properties and applications, John Wiley & Sons.

Ring T. A. (1996). Fundamentals of ceramic powder processing and synthesis. Academic Press. San Diego, California.

Salavati - Niasari M. and Davar F. (2009). Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater. Lett., 63(3), 441-443.

Saleh T. A. and Gupta V. K. (2012). Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ. Sci. Pollut. Res., 19(4), 1224-1228.

Satheesh R., Vignesh K., Rajarajan M., Suganthi A., Sreekantan S., Kang M. and Kwak B. S. (2016). Removal of congo red from water using quercetin modified α-Fe2O3 nanoparticles as effective nanoadsorbent. Mater. Chem. Phys. 180(1), 53-65.

Saud P. S., Pant B., Park M., Chae S.-H., Park S.J., Mohamed E. I. N., Al-Deyab S. S. and Kim H.-Y. (2015). Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants. Ceramic.Int., 41(1), 1771-1777.

Savage N. and Diallo M. S. (2005). Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Res., 7(4-5), 331342.

Schofield E. J., Sarangi R., Mehta  A., Jones A. M., Mosselmans F. J. W. and Chadwick A. V. (2011). Nanoparticle de-acidification of the Mary Rose. Mater. Today, 14(7), 354-358.

Schönenberger C. and Forró L. (2000). Multiwall carbon nanotubes. Phys. World, 13(6), 37-45. 

Shariati-Rad M., Irandoust M., Amri S., Feyzi M. and Ja’fari F. (2014). Magnetic solid phase adsorption, preconcentration and determination of methyl orange in water samples using silica coated magnetic nanoparticles and central composite design. Int. Nano Lett., 4(4), 91-101.

Sharma R. K., Oh H.-S., Shul Y.-G.and Kim H. (2007). Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor. J. Power Sour., 173(2), 1024-1028.

Shawky H. A., Chae S.-R., Lin S. and Wiesner M. R. (2011). Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desal., 272(1), 46-50.

Sonune A. and Ghate  R. (2004). Developments in wastewater treatment methods. Desal., 167, 5563.

Stafiej A. and Pyrzynska K. (2008). Solid phase extraction of metal ions using carbon nanotubes. Microchem. J., 89(1), 29-33.

Wang F., Wu Y.-H., H. Yang, Y. Tanida and A. Kamei (2015). Preliminary investigation of the 20 August 2014 debris flows triggered by a severe rainstorm in Hiroshima City, Japan. Geoenviron. Disasters, 2(1), 1-16.

Wang, S., C . W. Ng, W. Wang, Q. Li and Z. Hao (2012). Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chem. Eng. J., 197, 34-40.

Yang Q., G. Chen, J. Zhang and H. Li (2015). Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. RSC Adv., 32(5), 25541-25549.

Yang W., Huang C., Liu Q. (2012). Development of an Automatic Control System for Pot-Grown Rice Inspection Based on Programmable Logic Controller. In: Li D., Chen Y. (eds) Computer and Computing Technologies in Agriculture V. CCTA 2011. IFIP Advances in Information and Communication Technology, 370.

Yu F., Wu Y., Li X. and Ma J. (2012). Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multi-walled carbon nanotubes. J. Agri. Food Chem., 60(50), 12245-12253.

Zhang D. (2011). Preparation and characterization of nanometer calcium titanate immobilized on aluminum oxide and its adsorption capacity for heavy metal ions in water. Trans. Tech. Publ.

Zhang L., Song X. Liu X. Yang L. Pan F. and Lv J. (2011). Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem. Eng. J., 178, 26-33.

Zhang L., Xu T., Liu X., Zhang Y. and Jin H. (2011). Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions. J. Hazard. Mater., 197, 389-396.

Zhao D., Zhang W., Chen C. and Wang X. (2013). Adsorption of methyl orange dye onto multi-walled carbon nanotubes. Proc. Environ. Sci., 18, 890-895.

Zhong, L. S., Hu J. S., Liang H. P., Cao A. M., Song W. G. and Wan L. J. (2006). Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater., 18(18), 2426-2431.

Zhu H. Y., Jiang R., Fu Y. Q., Jiang J. H., Xiao L. and Zeng G. M. (2011). Preparation, characterization and dye adsorption properties of γ-Fe2O3/SiO2/chitosan composite. Appl. Surf. Sci., 258(4), 1337-1344.

Zhu H. Y., Jiang R., Xiao L. and Zeng G. M. (2010). Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour. Technol., 101(14), 50635069.

Zhuo C., Alves J. O., Tenorio J. A. S. and Levendis Y. A. (2012). Synthesis of carbon nanomaterials through up-cycling agricultural and municipal solid wastes. Indust. Eng. Chem. Res. 51(7), 2922-2930.