شناسایی تغییرات سطح نیزارهای دریاچه زریوار بین سال‌های 1363 تا 1390 با استفاده از تصاویر لندست TM و ETM+

نوع مقاله: مقاله اصلی

نویسندگان

1 استادیار، گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران

2 دانشجوی کارشناسی‌ارشد محیط زیست، گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران

چکیده

در سال‌های اخیر سنجش از دور به‌صورت گسترده‌ای برای شناسایی تغییرات سطح رستنی‌های مختلف و طبقه‌بندی آنها به کار رفته است. موضوع افزایش سطح نیزارهای دریاچه زریوار و خطرات آن برای زندگی موجودات آبزی این دریاچه به یکی از موارد مورد بحث تبدیل شده است. در این مطالعه برای شناسایی تغییرات سطح این نیزارها بین سال‌های 1363 تا 1390 از تصاویر ماهواره لندست TM و ETM+ استفاده شد. به این منظور نوارهای 3، 4 و 5 تمامی تصاویر با خطای میانگین مربعات کمتر از یک پیکسل تصحیح هندسی شدند. برای شناسایی تغییرات پهنه آبی بر روی تصاویر ترکیبی به ترتیب از نوارهای 5، 4 و 3 که در ماه‌هایی پر آب دریاچه گرفته‌شده بودند طبقه‌بندی نظارت شده با معادله حداکثر احتمال اعمال شد. شاخص NDVI برای شناسایی تغییرات سطح نیزار بر روی تصاویر گرفته شده در ماه‌های کم‌آبی دریاچه به کار رفت. نتایج نشان می‌دهد افزایش و کاهش سطح پهنه آبی دریاچه و نیزارهای اطراف آن رابطه مستقیمی با میزان بارندگی مؤثر دارد و امکان دارد افزایش سطح در هر دو بخش نیزار و پهنه آبی همزمان رخ دهد. مطالعه نوار ساحلی بین پهنه آبی و نیزارهای دریاچه با GPS و تصاویر ترکیبی نشان داد که این نوار در طول سه دهه گذشته نیز تغییر محسوسی نداشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of Canebrake level changes of the Zarivar Lake between 1984 to 2011, using the images of Landsat TM and ETM +

نویسندگان [English]

  • Jamil Amanollahi 1
  • Marziye Salehi 2
  • Neda Rostamiyan 2
  • Hadieh Maulavi 2
  • Shahin Mafakheri 2
1 Assist. Professor, Department of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
2 M. Sc., Department of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
چکیده [English]

In the past decade, remote sensing has been widely used to identify surface changes of different vegetation and their classification. Increasing the level of Canebrake of the Zarivar Lake and its risks for aquatic organisms living in the lake has become one of the most important issues in recent years. Therefore, the aim of this study was to identify surface changes of this Canebrake in the past three decades using Landsat TM and ETM+. For this purpose, bands 3, 4, and 5 of images were geo-referenced. RMSE were less than one pixel for all bands. The supervised classification method with a maximum likelihood algorithm was also applied to detect the changes of water area on the combined images (bands 5, 4, and 3) of months with full water in the lake. NDVI index was utilized to identify the surface changes of Canebrake on the images taken in the months with low water in the lake. The results show that the rise and fall of water area and surrounding canebrake has a direct correlation with a rainfall and increase in both levels maybe occur at the same time. Study on the coastal strip of water area with GPS and combined images showed that the coastal line had not a significant change in the past three decades.

کلیدواژه‌ها [English]

  • Remote Sensing
  • NDVI index
  • Classification
  • Water zone
  • maximum likelihood algorithm
Ahmadpour A., Solaimani K., Shekari M. and Ghorbani J. (2011). Comparison the performance of the three popular supervised classification methods, satellite data to study vegetation cover. J. Remote Sens. GIS Appl. Nat. Resour., 2(2), 69-81 [In Persian].

 

Amanollahi J., Kaboodvandpour Sh., Abdullah A. anad Rashidi. P. (2012). Assessment of vegetation variation on primarily creation zones of the dust storms around the Euphrates using remote sensing images. Environ. Asia. 5(2), 76-81.

 

Amiri R., Weng Q., Alimohammadi A. and Alavipanah S. K. (2009). Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the in the Tabriz urban area, Iran. Remote Sens. Environ., 113(12), 2606−2617.

 

Asarab Consulting Engineers. (2006). Repot of ecology study of the Zrivar lake. Kurdistan governor [In Persian].

 

Asmat A., Mansor S. and Hong W. T. (2003). Rule based classification for urban heat island mapping. 2nd FIG regional conference, December 2-3, 2003, Marrakech, Morocco.

 

Chen X. L., Zhao H. M., Li P. X. and Yin Z. Y. (2006). Remote sensing image-based analysis of the relationship between urbanheat island and land use/cover changes. Remote Sens. Environ., 104(2), 133−146.  

 

Coppin P., Jonckheere I., Nackaerts K., Muys B. and lambin. E. (2004). Digital change detection methodsim ecosystem monitoring: review. Int. J. Remote Sens., 25(9), 1565-1596.

 

Ebrahimpour S., Mohammadzade H. and Azarpaikan A. (2012). Assessment of eutrophication and feeding lake using GIS. 16th Conference of Geology Society of Iran. September 04, 2012, Iran [In Persian].

 

Hesami A. and Amini A. (2016). Changes in irrigated land and agricultural water use in the Lake Urmia basin. Lake Reserv. Manag., 32 (3), 288-296.

 

Kogan F. N. (1993). United states droughts of late 1980 as seen by NOOA Polar orbiting satellites. Int. Geosci. Remote Sens. Symposium, Aug 18-21, 1993. Tokyo, Japan.

 

Latifi H., Oladi J., Sarouei S. and Jalilvand H. (2007). Evaluating ETM+ data capability to provide "forest- shrub land- range" map (A case study of Neka- Zalemroud Region-Mazandaran- Iran). J. Sci. Technol. Agri. Nat. Resour., 11(40), 439-447.

 

Li J., Wang X. R., Wan X. J., Ma W. and Zhang. H. (2009). Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecol. Complexity, 6(4), 413−420.

 

Lu D., Mausel P., Brondizio E. and Moran. E. (2004). Change Detection Techniques. Int. J. Remote Sens., 25(12), 2365-2407.

 

Mahdavi A. and Fallah Shamsi R. (2012). Mapping forest cover change, using aerial photography and IRS-LISSIII imagery (case study: Ilam Township). Wood Food Sci. Technol., 19(1), 77-91 [In Persian].

 

Mather P. M. (1999). Computer processing of remotely sensed image. 460 pp.

 

Rashidi F., Aulad J. and Babaeiye Kafaki S. (1999). Survey the Improve of the classification accuracy of forest types using satellite data integration (Case study: Forestry project of Azarrod, Savadkoh, Mazandaran). Iranian J. Forest Poplar Res., 2(1), 11-22.

 

Rodgarmi P., Khorasani N., Monavari M. and Noori. J. (2007). Evaluation of the development options in environmental impact assessment using spatial multi-criteria evaluation method. J. Environ. Sci. Technol., 4, 73-84.

 

Salari H., Hassani A., Barghei M., Yazdanbakhsh A. and Rezaei. H. (2011). Investigation of performance wetland in removal N and P in wastewater treatment (Case study: Morad Tapeh). J. Water Wastewater, 23(3), 40-47.

 

Ustin S. L. (2004). Remote sensing for natural resource management and environmental monitoring. John Wiley & sons. 768 pp.

 

Yosefi S., Moradi H., Hossaini H. and Mirzaei S. (2011). Monitoring land use change in Marivan using TM and ETM+ sensors of Landsat satellite. M.Sc. Dissertation, Tarbiat Modares University, Iran [In Persian].

 

Yuan, F. and Bauer. M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ., 106(3), 375 –386.

 

Yuan, J. and long L. (1995). Study on forest vegetation classification with remote sensing. J. Hebei Normal Univ. (Nat. Sci.). 23, 247-278.