کاربرد شبکه عصبی جهت مدل‌سازی حذف کروم از محلول‌های آبی با استفاده از نانو ذرات آهن اکسید

نوع مقاله: مقاله اصلی

نویسندگان

1 دانشیار گروه فنی مهندسی، دانشکده مهندسی عمران، دانشگاه پیام نور شیراز، شیراز

2 کارشناسی ارشد مهندسی عمران- محیط زیست، دانشگاه پیام نور شیراز، شیراز

چکیده

     امروزه یکی از مهم‌ترین مشکلات زیست محیطی، آلودگی فاضلاب‌های صنعتی حاوی فلزات سنگین است. کروم شش ظرفیتی به‌عنوان فلز سنگین، یکی از آلاینده‌های مهم محیط زیست محسوب می‌شود. هدف از این تحقیق استفاده از شبکه عصبی برای مدل‌سازی حذف کروم با استفاده از نانو ذرات اکسید آهن (Fe2O3) و مقایسه آن با روش‌های آزمایشگاهی می‌باشد. تأثیر عوامل مهمی مانند pH، غلظت اولیه محلول، مقدار جاذب، زمان تماس و دما بر روی فرآیند حذف کروم بررسی شد. بیش از 90% کروم تحت شرایط 3=pH، غلظت اولیه کروم 10میلی‌گرم در لیتر، مقدار نانو ذره 1 گرم در لیتر، زمان تماس 60 دقیقه و در دمای 27 درجه سانتی گراد حذف گردید. با توجه به نتایج به دست آمده، مدل شبکه عصبی توانست بازده جذب کروم را با تابع انتقال تانژانت سیگموییدی در لایه پنهان و تابع انتقال محرک خطی در لایه خروجی پیش‌بینی کند. الگوریتم لونبرگ- مارکوارت با توجه به خروجی شبکه با حداقل میانگین مربعات خطا (MSE) برای آموزش و  اعتبار سنجی اعمال گردید. ضریب هم‌بستگی بالای حاصل از مدل‌سازی شبکه عصبی (996/0R2ANN =) و نزدیک بودن به ضریب هم‌بستگی نتایج تجربی (998/0 = R2Exp) نشان داد که مدل قادر به پیش بینی حذف کروم از محلول های آبی با استفاده از نانو ذرات اکسید آهن می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Artificial Neural Network (ANN) for Modelling Chromium(VI) removal using Iron Oxide Nanoparticles

نویسندگان [English]

  • Elham Asrari 1
  • Vahide Khosravi 2
1 Associate Prof., Department of Engineering, Faculty of Civil Engineering, Payam-e-Noor University, Shiraz, Iran
2 M.Sc. Department of Civil Engineering (Environment), Faculty of Civil Engineering, Payam-e-Noor University, Shiraz, Iran
چکیده [English]

 Nowadays, one of the most important environmental pollution is heavy metals industrial wastewater. Among the various types of heavy metals, chromium is one of the hazardous and toxic environmental pollutants. In order to prevent damage caused by chromium, it seems essential to prevent its entrance to the environment. The purpose of this study was modelling chromium removal using iron oxide nanoparticles through artificial neural network model for estimating the best removal Cr(VI) model. The optimum conditions (more than 90% removal efficiency) achieved were at pH=3, initial concentration of Cr = 10 mg/L; dosage of Fe2O3 = 1 g/L; contact time = 60 minutes, and temperature =25 . After backpropagation (BP) training, the ANN model was able to predict adsorption efficiency with a tangent sigmoid transfer function (Tansig) at hidden layer with 11 neurons and a linear transfer function (Purelin) at out layer. The Levenberg-Marquardt algorithm (LMA) was applied, giving a minimum mean squared error (MSE) for training and cross validation at the ninth place of decimal. The high correlation coefficient (R2ANN = 0.996) between the model and its closeness to the experimental coefficient (R2Exp = 0.998) showed that the model is able to predict the removal of Cr(VI) from aqueous solutions by iron oxide nanoparticles.

کلیدواژه‌ها [English]

  • Removal
  • Chromium
  • Iron Oxide Nanoparticles
  • Aqueous solutions
  • Neural Network

Aber S., Amani-Ghadim A. R., Mirzajani V. (2009). Removal of Cr (VI) from polluted solutions by electro coagulation: Modeling of experimental results using artificial neural network. J. Hazard. Mater., 171, 484-490. 

 

Abou E. L., Reash Y. G, Otto M., Kenawy I. M, Ouf A. M. (2011). Adsorption of Cr (VI) and As (V) ions by modified magnetic chitosan chelating resin. Int. J. Biol. Macro Mol., 29(7), 1-10. 

 

Aleboyeh A., Kasiri M., Olya M., Aleboyeh H. (2008). Prediction of azo dye decolorization by UV/H using artificial neural networks. Dyes Pigmen.77, 94-288. 

 

Chakrabarti S., Dutta B. K. (2004). Photo catalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater., 112(3), 78-269. 

 

Chen A. S., Leung M. T, Daouk H. (2003). Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Comput. Operat. Res., 30, 23-901. 

 

Fenglian F., Qi Wang. (2011). Removal of heavy metal ions from wastewater. J. Environ. Manag., 92(3), 407-418. 

 

Geyikçi F., Çoruh S., Kılıç E. (2013). Development of experimental results by artificial neural network model for adsorption of Cu2+ using single wall carbon nanotubes. Separa. Sci. Technol., 48, 1490-1499. 

 

Ghaedi M., Ansari A., AssefiNejad P., Ghaedi A., Vafaei A., Habibi M. H. (2015). Artificial neural network and bees algorithm for removal of Eosin B using cobalt oxide nanoparticle‐activated carbon: Isotherm and Kinetics study. Environ. Prog. Sustainable Energ., 34 (1), 155-168. 

 

Ghaedi M., Zeinali N., Ghaedi A., Teimuori M., Tashkhourian J. (2014). Artificial neural networkgenetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 125, 77-264. 

 

Jin W., Li Z. J., Wei L. S., Zhen H. (2000). The improvements of BP neural network learning algorithm. Signal Processing Proceedings, WCCC-ICSP 2000, IEEE. 

 

Kardam A., Raj K. R., Arora J. K., Srivastava S. (2012). Artificial neural network modeling for biosorption of Pb (II) ions on nanocellulose fibers. bionanosci. 2: 60-153. 

 

Karimi H., Ghaedi M. (2014). Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon. J. IndEngin Chem. 20: 2471-6. 

 

Mehrotra K., Mohan C.  K. Ranka S. (1997) Elements of artificial neural networks: MIT press.

 

Nourbakhsh H., Emam-Djomeh Z., Omid M., Mirsaeedghazi H., Moini S. (2014). Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Comput Electron Agri., 20(102), 1-9. 

 

Pengpeng Huang., Zhengfang Ye., WumingXie., Qi Chen., Jing Li., ZhenchengXu., Maosheng Yao.(2013). Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. J. of Hazardous Materials, 47 (12), 40504058. 

 

Sadeghi H. (2005). Development of sediment rating curve equations for rising and falling limbs of hydrograph using regression models. Iranian J. Wat. Resour., 1(1), 101-103. 

 

Telvari A. (2001). The relation of suspended sediment with some of the watershed characteristics in Dez and Karkhe in Lorestan province. J. Res. Construc., 15 (56), 47-56.  

 

Yuan P., Liu D., Fan M., Yang D., Zhu R. Ge F. (2010). Removal of hexavalent chromium from aqueous solution by the diatomite-supported/unsupported magnetite. J Hazard. Mat; 73,614-21.