بررسی کارایی نانو ذرات Fe:TiO2 درحذف رنگزای Cat Blue 41 در محیط آبی با استفاده از تابش نور خورشید به روش سطح-پاسخ(RSM)

نوع مقاله: مقاله اصلی

نویسندگان

1 گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی کردستان، سنندج، ایران

2 مرکز تحقیقات بهداشت محیط، دانشگاه علوم پزشکی کردستان، سنندج، ایران

3 دپارتمان علوم زمین، دانشگاه میسور، میسور، هندوستان

چکیده

حفظ محیط زیست بخصوص سلامت محیط آبی امروزه امری مهم می باشد. رنگزا‌‌ها به‌دلیل ماهیت‌شان از آلاینده‌های ظاهری بوده و حتی در غلظت‌های به نسبت پایین شفافیت و کیفیت زیبایی شناختی آب‌های سطحی را از بین می‌برند. تا کنون از فرایندهای متعددی برای حذف رنگ از پساب استفاده شده است. در این مطالعه بررسی حذف رنگزای Cat Blue 41 از محلول‌های آبی با استفاده از نانوذرات اکسید تیتانیم دوپ شده با اکسید آهن در حضور نورخورشید انجام شد. بر مبنای یک مطالعه تجربی- آزمایشگاهی با استفاده از طراحی آزمایش RSM، بررسی تاثیر متغیر‌های مستقل شامل pH، غلظت نانو ذره، غلظت اولیه رنگزا، غلظت پراکسید هیدروژن و زمان تماس بر راندمان حذف رنگزا با تعداد 30 تیمار انجام شد. تحلیل مدل پیشنهادی به روش آنالیز واریانس ANOVA انجام شد. مدل پیشنهادی برای میزان راندمان حذف رنگزا از نظر آماری در سطح اطمینان 95 درصد معنی دار بود. نتایج نشان داد افزایش غلظت نانو ذره، زمان تماس و غلظت پراکسید هیدروژن موجب افزایش کارایی می‌گردد. به‌گونه‌ای که افزایش غلظت نانو ذره از 5/0 به 3 گرم در لیتر راندمان از ۶/۴۸ به ۹/۸۸ رسید. هم‌چنین افزایش pH و غلظت اولیه رنگزا موجب کاهش راندمان گردید به‌نحوی که با افزایش غلظت رنگزا از 25 به 200 میلی‌گرم در لیتر راندمان از 8/69 به 5/35 کاهش یافت. طراحی آزمایش به نحو مطلوبی فرایند حذف را بهینه  می‌سازد و کاهش تعداد آزمایش‌ها سبب افزایش بازده حذف آلاینده می‌گردد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the efficiency of Fe:TiO2 nanoparticles in removal of Cat Blue 41 using sunlight irradiation in aqueous media using Response surface method (RSM)

نویسندگان [English]

  • Yahya Zandsalimi 1
  • Behzad Shahmoradi 2
  • Afshin Maleki 2
  • K. Byrappa 3
1 Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, iRAN
2 Environmental Health Research Center, Kurdistan university of Medical Sciences, Sanandaj, Iran
3 Department of Earth Sciences, University of Mysore, Mysore, India
چکیده [English]

Nowadays, protecting environment, especially aqueous medium is a crucial task in modern world. Because of their nature, dyes have not only negative impacts on the aesthetic aspects of the environment, but also result in serious biological and chemical side effects on the environment. Various processes have been applied for removal of dyes from effluent. The aim of this research was to assess the removal of Cat Blue 41 from aqueous media using Fe:TiO2 in the presence of sunlight. Based on a descriptive-laboratory scale experiment using RSM design experiment, the effect of independent variables of pH, nanoparticles dosage, initial dye concentration, H2O2 concentration and contact time on the photodegradation of the dye was carried out through 26 experimental run. Analysis of the proposed model was performed using ANOVA. The proposed model for the removal of dye was statistically significant at the 95 percent confidence level. The removal efficiency was function of the independent variables of nanoparticles dosage, initial dye concentration, and contact time. The photodegradation of Cat Blue 41 showed high photodegradation efficiency of Fe:TiO2 nanoparticles under sunlight irradiation. It was found that increasing the nanomaterials dosage, contact time, and H2O2 concentration results in increasing removal efficiency so that increasing nanomaterials dosage from 0.3 to 3 g/l resulted in increasing dye removal efficiency from 48.6 to 88.9% respectively. In addition, increasing pH and initial dye concentration led into reducing removal efficiency so that increasing dye concentration from 25 to 200 mg/l resulted in decreasing its removal efficiency from 69.8 to 35.5% respectively. Therefore, design of experiment suitably optimized the removal process and reducing the number of runs resulted in increasing efficiency of the pollutant removal.

کلیدواژه‌ها [English]

  • Dye
  • Cat Blue 41
  • Nanoparticle
  • RSM
Afkhami A., Saber-Tehrani M. and Bagheri H. (2010). Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desal., 263, 240-248.
 
Aleboyeh A., Kasiri M., Olya M. and Aleboyeh H. (2008). Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks. Dyes Pigments, 77, 288-294.
 
Bazrafshan E., Ahmadabadi M. and Mahvi A. H. (2013). Reactive Red-120 removal by activated carbon obtained from cumin herb wastes. Fresenius Environ. Bull., 22(2),584-590
 
Bezerra M. A., Santelli R. E., Oliveira E. P., Villar L. S. and Escaleira L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965977.
 
Dareini F., Amini M. A., Zarei, S. H. and Saghi M. H. (2014). Removal of Acid Black 1 dye from aqueous solution using nano-iron particles. J. Sabzevar Univ. Med. Sci. 20(5), 782-790.
 
Dresselhaus M. S., Dresselhaus G., Saito R. and Jorio A. (2005). Raman spectroscopy of carbon nanotubes. Phys. Report., 409, 47-99.
 
 Eyasu A., Yadav O. and Bachheti R. (2013). Photocatalytic degradation of methyl orange dye using Cr-doped ZnS nanoparticles under visible radiation. Int. J. Chem. Tech. Res., 5(4), 1452-1461.
 
 Ghanbarian M., Mahvi A. H., Nabizadeh R. and Saeedniya S. (2008). A pilot study of RO16 discoloration and mineralization in textile effluents using the nanophotocatalytic process. J. Water Wastewater, 69, 45-51.
 
Ghanizadeh G. and Asgari G. (2009). Removal of methylene blue dye from synthetic wastewater with bone char. Iranian J. Health Environ., 2, 104-113.
 
Hossini H., Safari M., Rezaee R., Soltani R.D.C. Giahi O. and Zandsalimi Y. (2016). Application of experimental design approach for optimization of the photocatalytic degradation of humic substances in aqueous solution using immobilized ZnO nanoparticles. J. Adv. Environ. Health Res., 3(3), 154-163.
 
Kirupavasam E. and Raj G.A.G. (2012). Photocatalytic degradation of amido black-10b catalyzed by carbon doped TiO2 photocatalyst. Int. J. Green Chem. Bioproc., 2(3), 20-25
 
Kusvuran E., Gulnaz O., Irmak S., Atanur O. M., Yavuz H. I. and Erbatur O. (2004). Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution. J. Hazard. Mater., 109, 85-93.
 
Lenore S. A. E. and Andrew D. (1998). Standard methods of water examination. Washington., 531-546.
 
 Lopes A., Martins S., Morao A., Magrinho M. and Goncalves I. (2004). Degradation of a textile dye CI Direct Red 80 by electrochemical processes. Portugaliae Electrochim. Acta, 22, 279-294.
 
Madrakian T., Afkhami A., Ahmadi M. and Bagheri H. (2011). Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater., 196, 109-114.
 
Mahmoodi N. M., Arami M., Limaee N. Y. and Tabrizi N. S. (2005). Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chem. Eng. J., 112, 191-196.
 
Maleki A., Mahvi A. H., Ebrahimi R. and Zandsalimi Y. (2010). Study of photochemical and sonochemical processes efficiency for degradation of dyes in aqueous solution. Korean J. Chem. Eng., 27, 1805-1810.
 
MalekiA., Zandsalimi Y., Jafari M., Daraei H. and Sadeghi S. (2016). Photocatalytic removal of acid red 18 dye from aqueous with ZnO nanoparticles synthesized by hydrothermal method. J. Health, 6, 498-506.
 
Matilainen A. and Sillanpää M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 80, 351-365.
 
Mezohegyi G., Kolodkin A., Castro U.  I., Bengoa C., Stuber F., Font J., Fabregat A. and Fortuny, A. (2007). Effective anaerobic decolorization of azo dye Acid Orange 7 in continuous upflow packed-bed reactor using biological activated carbon system. Indus. Eng. Chem. Res., 46, 6788-6792.
 
Mollah M. Y. A., Gomes J. A., Das K. K. and Cocke D. L. (2010). Electrochemical treatment of Orange II dye solution—use of aluminum sacrificial electrodes and floc characterization. J. Hazard. Mater., 174, 851-858.
 
Movahedian A. H. and Rezaei R. (2006). Investigating the efficiency of advanced photochemical oxidation (APO) technology in degradation of direct azo dye by UV/H2O2 process. Water Wastewater, 17(3), 75-83.
Pirsaheb M., Shahmoradi B., Khosravi T., Karimi K. and Zandsalimi, Y. (2016). Solar degradation of malachite green using nickel-doped TiO2 nanocatalysts. Desal. Water Treat., 57(21), 9881-9888.
 
Shahmoradi B., Ibrahim I., Namratha K., Sakamoto N., Ananda S., Somashekar R. and Byrappa K. (2010a). Surface modification of indium doped ZnO hybrid nanoparticles with n-butylamine. Int. J. Chem. Eng. Res., 2(2), 107-117.
 
Shahmoradi B., Soga K., Ananda S., Somashekar R. and Byrappa K. (2010b). Modification of neodymium-doped ZnO hybrid nanoparticles under mild hydrothermal conditions. Nanoscale, 2, 1160-1164.
 
Soltani R. D. C., Rezaee A., Khataee A. and Safari M. (2014). Photocatalytic process by immobilized carbon black/ZnO nanocomposite for dye removal from aqueous medium: Optimization by response surface methodology. J. Indus. Eng. Chem., 20, 1861-1868.
 
Yu S., Liu M., Ma M., Qi M., Lu Z. and Gao C. (2010). Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. J. Membrane Sci., 350, 83-91.