پیش‌بینی تبخیر-تعرق مرجع با استفاده از شبکه‌های عصبی مصنوعی RBF ،MLP SVM

نوع مقاله: مقاله اصلی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

تخمین تبخیر-تعرق گیاه مرجع یکی از مهم‌ترین مؤلفه‌ها در بهینه‌سازی مصرف آب کشاورزی و مدیریت منابع آب است. پیش‌بینی تبخیر-تعرق مرجع روزانه و هفتگی می‌تواند در پیش‌بینی نیاز آبی گیاهان و برنامه‌ریزی کوتاه‌مدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی MLP(پرسپترون چندلایه)، RBF (شبکه تابع پایه‌ای شعاعی)، SVM (ماشین بردار پشتیبان) در پیش‌بینی تبخیر-تعرق مرجع روزانه و هفتگی در ایستگاه همدیدی تبریز است. برای این منظور از داده‌های هواشناسی با دوره آماری 39 ساله (2009-1971) استفاده شد. برای آموزش شبکه‌های عصبی 80 درصد سری‌های زمانی ایجادشده به‌تصادف انتخاب و 20 درصد داده‌ها برای صحت‌سنجی مدل‌های پیشنهادی به کار رفتند. برای ایجاد سری زمانی تبخیر-تعرق مرجع روزانه و هفتگی در دوره موردنظر با استفاده از معادله استاندارد پنمن-مانتیث فائو 56 محاسبه گردید. ترکیب‌های متفاوتی از داده‌های ورودی (تأخیرهای مختلف) مورد ارزیابی قرار گرفت. نتایج مربوط به پیش‌بینی روزانه شبکه‌های عصبی نشان داد شبکه عصبی مصنوعی SVM-RBF kernel با تأخیر زمانی M5 دارای RMSE و R2 به ترتیب برابر با 0/51میلی‌متر در روز و 0/92 بهترین عملکرد را داشت. همچنین نتایج مربوط به پیش‌بینی هفت‌روزه نشان داد که شبکه عصبی MLP با تأخیر زمانی M8 دارای RMSE و R2 به ترتیب برابر با 3/88 میلی‌متر در هفته و 0/95 دارای بیش‌ترین دقت بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Forecasting of Reference Evapotranspiration using MLP, RBF, and SVM Neural Networks

نویسندگان [English]

  • Soheila Panahi 1
  • Masoud Karbasi 2
  • Jaefar Nikbakht 3
1 M.Sc. Student, Department of Water Engineering, Faculty of Agriculture, University of Zanjan, Iran
2 Assist. Professor, Department of Water Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
3 Associate Professor, Department of Water Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
چکیده [English]

Estimation of reference crop evapotranspiration is one of the most important elements in optimizing agricultural water consumption and in management of water resources. Forecasting the daily and weekly reference evapotranspiration can be used in predicting of crop water requirements and in short range planning irrigation. The aim of this study was to evaluate the performance of three types of artificial neural networks: MLP (multilayer perceptron), RBF (radial basis function network), and SVM (support vector machine) in forecasting the daily and weekly reference evapotranspiration at Tabriz synoptic stations. For this purpose, the meteorological data of 39-year period (1971-2009) were used. To train the neural network, 80 percent of time series data was selected randomly and 20 percent of data was used to validate the different models. To create the time series of daily and weekly reference evapotranspiration in a given period, the standard Penman-Monteith FAO 56 equation was used. Different combinations of input data (different delays) were used to evaluate the models. The results of daily forecasting of reference evapotranspiration showed that SVM with RBF kernel with input set of M5, RMSE=0.51 mm/day and R2=0.92 had the best performance. Moreover, the results of weekly forecasting of reference evapotranspiration showed that SVM with polynomial kernel with inputs set of M8, RMSE=3.88 mm/week and R2=0.95 had the best performance.

کلیدواژه‌ها [English]

  • Artificial Neural Networks
  • Crop water requirement
  • time series
  • Penman-Monteith
  • Tabriz
Allen R. G., Pereira L. S., Raes D. and Smith M. (1998). Crop evapotranspiration guideline for computing crop water requirements, FAO, Irrigation and Drainage Paper, No. 56, Rome.

 

Bachour R., Maslova I., Ticlavilca A., Walker W. and McKee M. (2015). Wavelet-multivariate relevance vector machine hybrid model for forecasting daily evapotranspiration. Stochastic Environ. Res. Risk Assess., 29(2), 1-15.

 

Behmanesh J., Azad Talatapeh N., Montaseri M. and Besharat S. (2014). Evaluation of linear and bilinear time series models in predicting of reference crop evapotranspiration at Urmia synoptic station. J. Wat. Res. Agricul., 28(1), 85-96 [In Persian].

 

Chen S., Cowan C. and Grant P. M. (1991). Orthogonal least squares learning algorithm for radial basis function networks, UIEEE Trans. Neural Networks, 2(2), 302-309.

 

Dibike Y., Velickov S., Solomatine D. and Abbott M. (2001). Model induction with support vector machines: introduction and applications. J. Comput. Civ. Eng., 15(3), 208-216.

 

Dodangeh S., Abedi Koupai J. and Gohari S. A (2012). application of time series modeling to investigate future climatic parameters trend for water resources management purposes. J. Wat. Soil Sci., 59(16), 59-74 [In Persian].

 

Ellis G. W., Yao C., Zhao R. and Penumadu D. (1995). Stress-strain modeling of sands using artificial neural networks. J. Geotec. Eng., ASCE, 121(5), 429-435.

 

Eslamian S. S., Gohari S. A., Biabankai M. and Malekian R. (2008). estimation of monthly pan evaporation using artificial neural networks and support vector machines. J. Appl. Sci., 19(8), 3497-3502.

Fooladmand H. R. (2010). Monthly prediction of reference crop evapotranspiration in Fars Province. J. Wat. Soil Sci., 20(1), 158-169 [In Persian]. Ghahreman N. and Gharekhani A. (2011). Evaluation of stochastic time series models in prediction of pan evaporation. J. Wat. Res. Agricul., 25(1), 75-81. [In Persian].

 

Guo J., Zhou J., Qin H., Zou Q. and Li Q. (2011). Monthly stream flow forecasting based on improved support vector machine model, Expert Sys. Appl., 38 (10), 13073-13081.

 

Hayking S. (1999) Neural networks: A comprehensive foundation, 2nd Ed. Prentice-Hall, N. J.

Kalteh A. M. (2013). Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform, Comp. Geosci., 54(4), 1-8.

 

Kisi O. (2010). Wavelet regression model for short-term stream flow forecasting. J. Hydrol., 389(3), 344-353.

 

Kisi O. and Cimen M. (2011). A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol., 399(1-2), 132-140.

 

Kisi O. (2008). The potential of different ANN techniques in evapotranspiration modeling. Hydrol.Proc., 22(14), 2449-2460.

 

Landeras G., Ortiz-Barredo A. and Javier Lopez J. (2009). Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J. Irrig. Drain. Eng., 135(3), 323-334.

 

LuoY., Chang X., Peng Sh., Khan Sh., Wang W., Zheng Q. and Cai X. (2014). Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts, Agricultural Water Management, 13(6) 42-51.

 

Najafi B. and Tarazkar M. H. (2006). Forecasting of Iranian pistachio export rate: Application of artificial neural network, Iranian Journal of Trade Studies, 39(2), 191-214 [In Persian].

 

Raghavendra S. and Paresh D. (2014). Support vector machine applications in the field of hydrology: A review. Appl. Soft Comp., 19(1), 372-386.

 

Tabari H., Marofi S. and Sabziparvar A. A. (2010). Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig. Sci., 28(5), 399–406.

 

Trajkovic S., Todorovic B. and Standkovic M. (2003). Forecasting of reference evapotranspiration by artificial neural network. J. Irrig. Drain. Eng. ASCE, 129(6), 454-457.

 

Yoon H., Jun S. C., Hyun Y., Bae G. O. and Lee K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol., 396(1-2), 128-138.

 

Zare-Abyaneh H., Bayat M., Marofi S., Amiri R. (2009). Evaluation of artificial neural network and adaptive neuro fuzzy inference system in decreasing of reference evapotranspiration parameters. J. Wat. Soil, 24(2), 297-305 [In Persian].