تغییرات مکانی کیفیت منابع آب زیرزمینی دشت بیرجند از نظر مصارف کشاورزی

نوع مقاله: مقاله اصلی

نویسندگان

1 استادیارگروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران

2 دانش آموخته دکتری مهندسی آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه تهران، تهران، ایران

چکیده

  بیش از 85 درصد از برداشت منابع آب موجود زیرزمینی دشت بیرجند در بخش کشاورزی به مصرف می‌رسد. با توجه به اهمیت کیفیت آب در آبیاری، نمونه‌برداری از چهل‌وهفت چاه پیزومتری دشت بیرجند، باهدف تعیین کیفیت منابع آب زیرزمینی از نظر مصارف کشاورزی صورت گرفت. مقادیر pH و EC در محل نمونه‌برداری اندازه‌گیری شد و آنالیز آنیون‌ها و کاتیون‌های غالب در آزمایشگاه انجام گرفت. پس از آماده شدن نتایج آنالیز کیفی نمونه‌ها، ابتدا با استفاده از روش‌های مختلف زمین‌آماری مقادیر Cl، HCO3، SAR، pH و EC برآورد گردید و خطای برآورد هر روش محاسبه شد. سپس بر اساس طبقه‌بندی فائو و با استفاده از بهترین روش زمین‌آماری، نقشه تغییرات مکانی Cl، HCO3، SAR، pH و EC تهیه گردید. نتایج حاصله نشان داد که روش کریجینگ در درون‌یابی مقادیر پارامترهای مذکور، برآورد بهتری نسبت به روش وزن دهی عکس فاصله (IDW) و توابع اسپیلاین (RBF) دارد. براساس طبقه‌بندی فائو، آب زیرزمینی آبخوان دشت بیرجند برای مصارف کشاورزی به لحاظ SAR، کلر و بی‌کربنات دارای محدودیت زیاد، به لحاظ شوری دارای محدودیت کم و به لحاظ اسیدیته بدون محدودیت است.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial variations of ground water quality in Birjand Plain for agriculture

نویسندگان [English]

  • Khaled Osati 1
  • Mohammad Javad Nahvinia 2
1 Assistant Professor, Department of Watershed Management, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
2 PhD of Irrigation and Drainage Engineering, Faculty of Agriculture, University of Tehran, Tehran, Iran
چکیده [English]

More than 85 percent of current ground water resources extractions are supplying agriculture water demands in Birjand Plain. Because of the importance of water quality for irrigation, 47 samples collected from piezometric wells in Birjand Plain, to determine ground water quality suitability for agriculture. pH and EC values measured at filed campaign beside laboratory analysis of water samples for major ions concentrations. After chemical analysis of water samples, different geo-statistical models had used to model Cl, HCO3, SAR, pH and EC water qualities parameters. Then the error of each simulation was calculated. Finally, the best method was performed to prepare spatiality maps of Cl, HCO3, SAR, pH and EC parameters in Birjand aquifer based on FAO classification. The interpolation errors assessment highlighted Kriging as the most accurate method for all investigated parameters, in compare to Inverse Distance weighting (IDW) and Radial Basis Functions (RBF). The spatiality maps based on FAO classification show that ground water resources in Birjand plain are not applicable for agriculture due to extremely high values of SAR, Cl, and HCO3, where its usage has limited a little for agriculture by EC and its quality has a suitable range of pH.

کلیدواژه‌ها [English]

  • Geo-Statistics
  • Groundwater quality
  • Kriging
  • FAO
  • Birjand plain
Ahmadi S. H. and Sedghamiz A. (2008). Application and evaluation of kriging and co-kriging

methods on groundwater depth mapping. Environ. Monit. Assess., 138, 357– 368.

 

Arslan H. (2012). Spatial and temporal mapping of groundwater salinity using ordinary kriging and

indicator kriging: The case of Bafra Plain, Turkey. Agricul. Wat. Manag., 113, 57– 63.

 

Brus D. J. and Heuvelink Gerard B. M. (2007). Optimization of sample patterns for universal kriging

of environmental variables, Geoderma, 138, 86- 95.

 

Bucene L. C. and Zimback C. R. L. (2003). Comparison of methods of interpolation and spatial

analysis of pH data in Botucatu, SP. IRRIGA, 8(1), 21- 28.

 

Elias Azar Kh. (2003). Reclamation of saline and sodic soils (soil & water management). Jahad

Daneshgahi, Urmia University, 300 pp. [in Persian].

 

Figueira R., Sousa A. J., Pacheco A. M. G. and Catarino F. (1999). Saline variability at ground level

after kriging data from Ramalina spp. Biomonitors. Sci. Total Environ., 232, 3-11.

 

Food and Agriculture Organization (FAO) (1985). Wastewater quality guidelines for agricultural use.

Available online at: http://www.fao.org/docrep/t0551e/t0551e04.htm, accessed 2016- 03- 22.

 

Ghadermazi J., Sayyad G., Mohammadi J., Moezzi A., Ahmadi F. and Schulin R. (2011). Spatial

prediction of nitrate concentration in drinking water using pH as auxiliary co-kriging variable.

Procedia Environ. Sci., 3, 130– 135.

 

Gong G., Mattevada S. and O’Bryant S. E. (2014). Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ. Res., 130,

59– 69.

 

Guerra L. C., Garcia A., Garcia y., Hook J. E., Harrison K. A., Thomas D. L., Stooksbury D. E. and

Hoogenboom G. (2007). Irrigation water use estimates based on crop simulation models and

Kriging. Agricul. Wat. Manag., 89(3), 199 – 207.

 

Hu K., Huang Y., Li H., Li B., Chen D. and Edlin W. R. (2005). Spatial variability of shallow

groundwater level, electrical conductivity and nitrate concentration, and risk assessment of

nitrate contamination in North China Plain. Environ. Int., 31, 896 – 903.

 

Jager N. (1990). Hydrology and Groundwater simulation, Lewis Publisher, New York, USA.

Osati Kh., Koeniger P., Salajegheh A., Mahdavi M., Chapi K. and Malekian A. (2014).

 

Spatiotemporal patterns of stable isotopes and hydrochemistry in springs and river flow of the

upper Karkheh River Basin, Iran. Isotopes Environ. Health Studies, 50(2), 169- 183.

 

Osati Kh., Salajegheh A. and Arekhi S. (2013). Spatial variation of nitrate concentrations in

groundwater by Geostatistics (Case Study: Kurdan Plain). Iranian J. Natur. Resour., 65(4), 461-

472 [in Persian].

 

South Khorasan Regional Water Authority (2007). Identifying water resources and planning for

optimal use of water resources in South Khorasan province (an integrated project), South

Khorasan Regional Water Authority, accessible from the local library [in Persian].