بررسی قابلیت مدل ترکیبیPSO-ANFISدر پیش‌بینی عمق آبشستگی

نوع مقاله: مقاله اصلی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی عمران، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

2 استادیار، گروه مهندسی عمران، دانشکده مهندسی عمران، دانشگاه رازی، کرمانشاه، ایران،

3 استادیار، دانشکده مهندسی عمران، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

چکیده

درسال‌های اخیر، فن‌های داده‌کاوی و یادگیری ماشین در زمینه‌های مختلف برای ساخت سامانه‌های اطلاعاتی هوشمند توسعه‌یافته‌اند. بااین‌حال، تعداد کمی از روش‌های ارائه‌شده توانایی پشتیبانی برخط را داشته و یا دارای انعطاف‌پذیری در آنالیز حجم زیادی از داده‌ها می‌باشند. در تحقیق حاضر، به‌منظور به دست آوردن تخمین‌های مناسب از پیش‌بینی عمق آبشستگی، در مدل تلفیقی شبکه عصبی و سیستم استنتاج فازی، از فن ازدحام ذرات (PSO) استفاده شد. آنالیزها با استفاده از 188 دادۀ صحرایی عمق آبشستگی پایه منفرد که به‌وسیله سازمان حفاظت خاک آمریکا (USGS) ثبت گردیده، انجام شد. به‌منظور تسریع در یادگیری از طریق آموزش، برای افزایش دقت پیش‌بینی‌های کوتاه‌مدت از روش مومنتوم استفاده شد. نتایج نشان دادندکه روش PSO-ANFIS با کم‌ترین ریشه میانگین مربعات خطا (RMSE) نسبت به دیگر مدل‌های ارائه‌شده، دقت بیش‌تری دارد. ازاین‌رو، این روش با اطمینان بیشتری می‌تواند مورداستفاده طراحان و مهندسین قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

A Hybrid ANFIS- PSO Model for Scour Depth Prediction

نویسندگان [English]

  • Mohammad Heman Jannaty 1
  • Afshin Eghbalzadeh 2
  • SeyedAbbas Hosseini 3
1 Ph.D. Scholar, Department of Civil Engineering, Faculty of Civil Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Assist. Professor, Department of Civil Engineering, Faculty of Civil Engineering, University of Razi, Kermanshah, Iran
3 Assist. Professor, Department of Civil Engineering, Faculty of Civil Engineering, Islamic Azad University, Science and Research Branch, Tehran, iran
چکیده [English]

In recent years, newly-developed data mining and machine learning techniques have been applied in various fields to build intelligent information systems. However, few of these approaches offer online support or are flexibleto be adapted to large and complex datasets. Therefore, the present research work adopts Particle Swarm Optimization (PSO) techniques to obtain appropriate parameter settings for membership function and integrates the Adaptive-Network-based Fuzzy Inference System (ANFIS) model to make the model fit for predicting scour depth. A dataset of 188 scour depths for single piers presented by the USGS was used. Results of the model prediction show that the derived model is best fitted to the field data. The proposed one-order momentum method is able to learn quickly through one-pass training and provides high-accuracy short-term predictions. Moreover, this method is suitable for online learning but the two-order momentum method is appropriate for incremental learning. The PSO-ANFIS approach could provide better results in predicting scour depths compared with other models.

کلیدواژه‌ها [English]

  • Scour Depth
  • PSO-ANFIS
  • Field data
  • Single Piers

Ahmad M. (1953). Experiments on Design and Behavior of Spur Dikes, International hydraulics convention, St. Anthony Falls Hydraulics Laboratory, Minneapolis, 15(2), 149 – 159.

 

Ansari S. A. and Qadar A. (1994). Ultimate Depth of Dcour Aroun Bridge Piers. ASCE, Buffalo, NY

3(2), 51 – 55.

 

Arneson L. A., Zevenbergen L. W., Lagasse P. F. and Clopper P. E. (2012). Evaluating Scour at Bridges, 4th Ed. Hydraulic Engineering Circular No. 18 (HEC-18), Federal Highway Administration,

Washington, DC.

 

Arbib M. (2003). The Handbook of Brain Theory and Neural Networks, The MIT Press, Cambridge, MA.

Bateni S.M., Borghei S. M. and Jeng D. S. (2007). Neural Network Aadneuro-Fuzzy Assessments for Scour Depth Around Bridge Piers, Engineering Applications of Artificial Intelligence, 20(3), 401 – 414.

 

Blench T. (1969). Mobile-bed fluviology, University of Alberta Press, Edmonton, Canada.

 

Breusers H. N. C. (1965). Scour around Drilling Platforms. International Association for Hydraulic Research, 5 (2), 19- 27.

 

Breusers H. N. C. and Raudkivi A. J. (1991). Scouring: Hydraulicstructures design manual, International Association of Hydraulic Research, Balkema, Rotterdam.

 

Chitale S. V. (1962). Scour at Bridge Crossings. Transactions of the American Society of Civil Engineers, 127(1), 191 – 196.

 

Eberhart R. C. and Kennedy J. (1995). A New Optimizer Using Particle Swarm Theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan), IEEE Service Center, Piscataway, NJ, 2(1), 39–43.

 

Firat M. and Gungor M. (2009). Generalized Regression Neural Networks and Feed Forward Neural Networks for Prediction of Scour depth around Bridge Piers. Advances in Engineering Software, 40(8), 731 – 737.

 

Freeman J. A. S. and Saad D. (1997). On-Line Learning in Radial Basis Function Networks, Neural Computing, 9 (7), 196-203.

 

Froehlich D. C. (1988). Analysis of Onsite Measurements of Scour at Piers. ASCE National Hydraulic Engineering Conference, ASCE, Colorado Springs, CO, 1(1), 534 – 539.

 

Hu B. G., Qu H. B., Wang Y. and Yang S. H. (2009). A Generalized-Constraint Neural Network Model: Associating Partially Known Relationships for Nonlinear Regressions, Information Sciences, 179 (12), 1929–1943.

 

Jang J. R. (1993). ANFIS Adaptive-Network-Based Fuzzy Inference System, IEEE Transactions on Systems, Man and Cybernetics, 23 (3), 665–685.

 

Jang J. S. and Sun C.T. (1997). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ.

 

Laursen E. M. (1963). Analysis of Relief Bridge scour, Journal of Hydraulic Division, 89 (3), 93 –118.

 

Melville B. W. (1997). Pier and Abutment Scour: Integrated Approach, Journal of Hydraulic Engineering, 123(2), 125 – 136.

 

Murillo J. A. (1987). The Scourage of Scour, Civil Engineering, 57(3), 66-69.

 

Neill C. R. (1973). Guide to bridge hydraulics. Roads and Transportation Association of Canada, University of Toronto Press, Toronto.

 

Sim K., Liu G., Gopalkrishnan V. and Li J. (2011). A case study on financial ratios via cross-graph quasi-bicliques, Information Sciences 181 (1), 201–216.

 

Sheppard D. M., Melville B. and Demir H. (2014) Evaluation of Existing Equations for Local Scour at Bridge Piers. Journal of Hydraulic Engineering 140(1), 14-23.

 

Toth E. and Brandimarte L. (2011). Prediction of local scour depth at bridge piers under clear-water and live-bed conditions: Comparison of literature formulae and artificial neural networks, Journal of Hydroinformatics, 13(4), 812 – 824.

 

Wilson K. V. J. R. (1995). Scour at Selected Bridge Sites in Mississippi. Resources Investigations Report. 94– 4241, Geological Survey Water, Reston, VA.

 

Yuan S. F. and Chu F. L. (2007). Fault Diagnostics Based On Particle Swarm Optimization And Support Vector Machines, Mechanical Systems and Signal Processing 21(4), 1787–1798.

 

Zadeh L. A. (1965). Fuzzy Sets, Information and Control, 8(1), 338–353.