توسعه مدل‌های هیبریدی شبکه عصبی مصنوعی- الگوریتم تکاملی جهت پیش‌بینی عدد فرود جریان در کانال‌های باز در مدل‌سازی انتقال رسوب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 کارشناس ارشد، گروه مهندسی آب، پردیس ابوریحان، دانشگاه تهران، تهران، ایران

3 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

10.22034/jewe.2020.248209.1421

چکیده

تخمین مقدار عدد فرود در مهندسی آب بسیار مهم است. از طرفی استفاده از مدل‌های یادگیری ماشین به دلیل اینکه نیاز به اطلاعات ساختمانی سامانه‌ها ندارند، موردتوجه قرار گرفته‌اند. در پژوهش حاضر از مدل شبکه عصبی مصنوعی (ANN) استفاده‌شده و از الگوریتم‌های تکاملی ازدحام ذرات (PSO)، الگوریتم کرم شب‌تاب (FA) و الگوریتم تکاملی تفاضلی (DE) جهت بهبود نتایج ANN در پیش‌بینی مقدار عدد فرود بهره گرفته ‌شد. پارامترهای مؤثر بر پیش­بینی عدد فرود پارامترهای رسوب حجمی، اندازه دانه­ها، عامل اصطکاک و نسبت اندازه دانه­ها به شعاع هیدرولیکی بودند که باهم ترکیب شدند و الگوهای ورودی مختلفی به‌عنوان ورودی به مدل‌ها تدوین ‌شد. نتایج نشان داد الگویی که با مشارکت همه پارامترهای ورودی باشد بیش­ترین دقت را در پیش‌بینی عدد فرود دارد. استفاده از الگوریتم‌های تکاملی پیشنهادی توانست دقت مدل ANN را به‌صورت قابل‌توجهی بهبود بخشد. در بین الگوریتم‌های مورد بررسی، الگوریتم­های FA و PSO در بیش­تر معیارهای ارزیابی دقت مناسبی داشتند. در حالت کلی استفاده از الگوریتم‌های تکاملی، دقت مدل ANN را به  میزان m 89/0، m 07/0 و 1/0 به ترتیب برای معیار ارزیابی RMSE، MAPE و R2 بهبود بخشید. نتایج مدل‌های یادگیری ماشین در مقایسه با معادلات تجربی نیز اختلاف چشم­گیری داشتند و حاکی از دقت بسیار مناسب مدل‌های یادگیری ماشین بودند. به همین سبب استفاده از مدل­های یادگیری ماشین به‌جای استفاده از معادلات تجربی در برآورد مقدار عدد فرود پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of a Hybrid ANN-evolutionary Algorithms Models to Predict the Froude Number in Open Channel Flows in Modeling of Sediment Transport

نویسندگان [English]

  • Naser Arya azar 1
  • Sami Ghordoyee Milan 2
  • Nazila Kardan 3
1 M. Sc., Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 M. Sc., Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran, Tehran, Iran
3 Assist. Professor, Department of Civil Engineering, Azarabaijan Shahid Madani University, Tabriz, Iran
چکیده [English]

In water engineering, estimating Froude number’s value is very important. The applying of machine learning models has received much attention because it does not require system building information. For this purpose, in the present study, the artificial neural network (ANN) model was used. To improve the ANN results, evolutionary algorithms including Particle Swarm Algorithm (PSO), Firefly Algorithm (FA) and Differential Evolution Algorithm (DE) have been used to predict the amount of Froude number. The parameters affecting the prediction of Froude number were λ, d / R, Dgr, Cv that combined, and different input patterns have been developed as input to the models. The results showed that the model involving all the affecting input parameters has the highest accuracy in predicting the Froude number. The proposed evolutionary algorithms significantly improved the accuracy of the ANN model. Among the algorithms, FA and PSO algorithms had good accuracy in most evaluation criteria. In general, the applying of evolutionary algorithms improved the accuracy of the ANN model by 0.89 m, 0.07 m and 0.1. The results of machine learning models were also significantly different from the experimental equations and indicated the high accuracy of machine learning models. Therefore, it is recommended to use them instead of using experimental equations in estimating the value of the Froude number.

کلیدواژه‌ها [English]

  • ANN Hybrid Model
  • ANN
  • Froude number
  • Sediment transport
Ab Ghani, A. (1993). Sediment Transport in Sewers. PhD Thesis, University of Newcastle upon Tyne, UK.
Arumugam, M. S., Rao, M. V. C. and Chandramohan, A. (2008). A new and improved version of particle swarm optimization algorithm with global–local best parameters. Knowl. Inf. Syst., 16(3), 331-357.
Bong, C. H. J. (2013). Self-cleansing Urban Drain Using Sediment Flushing Gate Based on Incipient Motion. Ph.D. Thesis. Universiti Sains Malaysia.
Bong, C. H. J., Lau, T. L., Ab Ghani, A. and Chan, N. W. (2016). Sediment deposit thickness and its effect on critical velocity for incipient motion. Water Sci. Technol. 74(8), 1876-1884.
Butler, D., May, R. and Ackers, J. (2003). Self-cleansing sewer design based on sediment transport principles. J. Hydraul. Eng., ASCE, 129(4), 276–282.
Chen, X. Y. and Chau, K. W. (2016). A hybrid double feedforward neural network for suspended sediment load estimation. Water Resour Manag., 30(7), 2179–2194.
Chau, K. W. (2006). Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol., 329(3-4), 363-367.
Delleur, J. W. (2001). New results and research needs on sediment movement in urban drainage. J. Water Resour. Plan. Manag., 127(3), 186-193.
Eberhart, R. and Kennedy, J. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942-1948). Citeseer.
El-Zaemey, A. K. S. (1991). Sediment Transport Over Deposited Beds in Sewers. PhD Thesis, University of Newcastle upon Tyne, UK.
Garoosi Nejhad, A. and Bozorg Hadad, O. (2011). Optimal operation of the tank using algorithm implementation Optimization of firefly. Fifth Iranian Water Resources Management Conference, Shahid Beheshti University, Iran [In Persian].
Haykin, S. (1999). Neural network a comprehensive foundation. Prentice-Hall, New Jersey.
Hosseini-Moghari, S. and Banihabib, M. (2014). Optimizing operation of reservoir for agricultural water supply using firefly algorithm. J. Soil Water Conserv., 3(4), 17-31 [In Persian].
Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942–1948.
Kisi, O. and Shiri, J. (2012). River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Comput. Geosci., 43, 73-82.
Lippman, R. (1987). An introduction to computing with neural nets. IEEE ASSP Mag., 4(2), 4-22.
May, R. (1993). Sediment Transport in Pipes and Sewers with Deposited Beds. Report SR 320, HR Wallingford, Oxfordshire, UK.
Mayerle, R., Nalluri, C. and Novak, P. (1991). Sediment transport in rigid bed conveyances. J. Hydraul. Res., 29(4), 475-495.
Mayerle, R. (1988). Sediment Transport in Rigid Boundary Channels. PhD thesis, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
Mehra, P. and Wah, B. W. (1990). Artificial neural networks: concepts and theory. IEEE Computer Society Press.
Montes, C., Vanegas, S., Kapelan Z., Berardi, L. and Saldarriaga, J. (2020). Non-deposition self-cleansing models for large sewer pipes. Water Sci. Technol., 81(3), 606-621.
Novak, P. and Nalluri, C. (1975). Sediment transport in smooth fixed bed channels. J. Hydraul. Div., 101(9), 1139-1154.
Olyaie, E., Banejad, H., Chau, K. W. and Melesse, A. M. (2015). A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Environ. Monit. Assess., 87(4), 189.
Ota, J. J. and Perrusquia, G. S. (2013). Particle velocity and sediment transport at the limit of deposition in sewers. Water Sci. Technol., 67(5), 959–967.
Piotrowski, A. P. and Napiorkowski, J. J. (2011). Optimizing neural networks for river flow forecasting–Evolutionary Computation methods versus the Levenberg–Marquardt approach. J. Hydrol., 407(1-4), 12-27.
Safari, M. J. S., Ebtehaj, I., Bonkdari, H. and Es-haghi, M. S. (2019). Sediment transport modeling in rigid boundary open channels using generalize structure of group method of data handling. J. Hydrol., 577, 125-142.
Safari, M. J. S. and Danandeh Mehr, A. (2018). Multigene genetic programming for sediment transport modeling in sewers at non-deposition with deposited bed condition. Int. J. Sediment Res., 33(3), 262–270.
Salem, A. M. (2013). The effects of the sediment bed thickness on the incipient motion of particles in a rigid rectangular channel. Seventeenth International Water Technology Conference (IWTC17), Istanbul, Turkey.
Storn, R. and Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Global Optim., 11, 341–359.
Vongvisessomjai, N., Tingsanchali, T. and Babel, M. S. (2010). Non-deposition design criteria for sewers with part-full flow. Urban Water J., 7(1), 61–77.
Yang, X-S. (2010). Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-Inspired Comput., 2(2), 78–84.
Zhang, Y. (2006). Towards piecewise-linear primal neural networks for optimization and redundant robotics. In: Proceedings of IEEE International Conference on Networking, Sensing and Control, pp. 374–379. IEEE Computer Society Press, Los Alamitos.
Zhu Y. M., Lu X. X. and Zhou Y. (2007). Suspended sediment flux modeling with artificial neural network: An example of the Long Chuanjiang River in the Upper Yangtze Catchment, China. Geomorph., 84(1), 111-125.