پیش‌بینی تأثیر تغییر اقلیم بر دمای حداقل و حداکثر شهر سنندج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد، گروه مهندسی و مدیریت منابع آب، موسسه آموزش عالی توسعه دانش، سنندج، ایران

2 استادیار، گروه مهندسی و مدیریت منابع آب، موسسه آموزش عالی توسعه دانش، سنندج، ایران

10.22034/jewe.2020.239070.1386

چکیده

به‌طور گسترده‌ای از مدل‌های گردش عمومی جوّ (GCM) برای ارزیابی تأثیرات تغییر اقلیم در مقیاس جهانی استفاده می‌شود، اما این مدل‌ها دقت کافی را برای ارزیابی تغییرات اقلیمی در مقیاس محلی و منطقه‌ای ندارند. در این مطالعه خروجی مدل CanESM2 با استفاده از مدل آماری SDSM در منطقه مورد مطالعه به‌وسیله داده‌های ایستگاه سینوپتیک سنندج که دارای آمار بلند مدت است، ریزمقیاس شدند. سپس با در نظر گرفتن سناریوهای انتشار RCP2.6، RCP4.5 و RCP8.5 برای دوره‌های آتی 2025-2050 و 2051-2075 تأثیر تغییر اقلیم بر دمای شهر سنندج مورد ارزیابی قرار گرفت. دمای حداقل و حداکثر روزانه برای دوره پایه 1979-2005  به‌عنوان ورودی مدل در نظر گرفته شد. نتایج خروجی مدل SDSM نشان می‌دهد که میانگین دمای حداقل ماهانه وقتی که زیر صفر است برای دوره‌های 2025-2050 و 2051-2075 و تحت هر سه سناریو کاهش پیدا می‌کند و زمانی که میانگین دمای هوای حداقل بیش­تر از صفر است برای هر دو دوره آتی و تحت هر سه سناریو افرایش پیدا می‌کند. میانگین دمای حداکثر برای دوره‌های آتی 2025-2050 و 2051-2075 و تحت هر سه سناریو RCP2.6، RCP4.5، RCP8.5 افزایش پیدا می‌کند و این افزایش بیش­تر مربوط به ماه‌های گرم سال است. با توجه به نتایج به‌دست آمده شهر سنندج در آینده روز‌های گرم­تر و شب‌های سردتری خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Predicting the Impact of Climate Change on Temperature in Sanandaj City

نویسندگان [English]

  • Zaniar Fatehi 1
  • Seyed Vahid Shahoei 2
1 M.Sc. Student, Department of Water Engineering and Management, Faculty of Civil Engineering, Tose Danesh Institute of Higher Education, Sanandaj, Iran
2 Assist. Professor, Department of Water Engineering and Management, Faculty of Civil Engineering, Tose Danesh Institute of Higher Education, Sanandaj, Iran
چکیده [English]

The GCM models are widely used to assess the effects of global climate change, but they are not accurate enough to assess climate change locally and regionally. In this study, using the statistical model of SDSM in the study area, the output of the CanESM2 model was downscaled and compared with data from Sanandaj synoptic station, which has long-term statistics. Then, considering the release scenarios of RCP2.6, RCP4.5 and RCP8.5 for the future periods of 2025-2050 and 2051-2075, the effect of climate change on the temperature of Sanandaj city was evaluated. The minimum and maximum daily temperatures for the base period of 1979-2005 were considered as the input of the model. The results of the SDSM model show that the average monthly minimum temperature drops below zero for the periods 2025-2050 and 2051-2075 and decreases under all three scenarios, and when the average air temperature is less than zero for both future periods, it increases under all three scenarios. The average maximum temperature for the next periods is 2025-2050 and 2051-2075 and under all three scenarios RCP2.6, RCP4.5, RCP8.5 increase and this increase is mostly related to the warm months of the year. According to the obtained results, Sanandaj city will have warmer days and colder nights in the future.

کلیدواژه‌ها [English]

  • Downscaling
  • general circulation model
  • Global warming
  • SDSM model
Abbasi, F., Malbousi, S., Babaeian, E., Athmari, M. and Borhani R. (2010). South Khorasan climate change prediction during the period 2039 2010 using the ECHO-G model output. Water Soil (Agri. Sci. Technol.), 24(2), 218-233 [In Persian].
Asakereh, H. and Akbarzadeh, Y. (2017). Simulation of temperature and precipitation variation of the synoptic station of Tabriz during 2010 2100 by using SDSM and CanEsm2 model's output. Geogra. Environ. Hazard., 21, 153-174 [In Persian].
Asakereh, H. and Kiani, H. (2019). Evaluation of SDSM model performance in simulating the average temperature of Kermanshah City. Sci. Res. Quart. Geogra. Data, 27(105), 50-62 [In Persian].
Asakereh, H., Shahbaee Kotenaee, A., Foroumadi, M. (2019). Evaluating changes and forecasting minimum temperature in the west of Mazandaran Province using statistical downscaling model SDSM. J. Water Soil Sci., 23(1), 101-119 [In Persian].
Asakereh, H. and Shah Mansouri, B. (2016). Investigation and prediction of the temperature changes in Arak station based on statistical downscale model. Nat. Geogr. Res., 48(2), 193-212 [In Persian].
Banze, F., Guo, G. and Xiaotao, S. (2018). Impact of climate change on precipitation in Zambeze River Basin in Southern Africa. Nat. Environ. Pollut. Technol., 17(4), 1093-1103.
Charron, I. (0214). A Guidebook on Climate Scenarios: Using Climate Information to Guide Adaptation Research and Decisions, Ouran.
Gulacha, M. M. and Mulungu, D. M. (2017). Generation of climate change scenarios for precipitation and temperature at local scales using SDSM in Wami-Ruvu River Basin Tanzania. Phys. Chem. Earth, A/B/C, 100, 62-72.
Hajimohammadi, M., Ghermezcheshmeh, B. and Azizian, A. (2019). Evaluate the performance of SDSM model in different station and predict climate variables for future. Iran. J. Watershed Manage. Sci., 3(44), 28-37 [In Persian].
Jahangiri, M. H., Sadatinejad, S. J. and Haghighi, P. (2018). Prediction of temperature parameters under CanESM2 model (Case study: Lar synaptic station). J. Exten. Develop. Watershed Manage. Promot. Develop., 6(22), 45 [In Persian].
Jaiswal, R. K., Tiwari, H. L., Lohani, A. K. and Yadava, R. N. (2018). Statistical downscaling of minimum temperature of Raipur (C.G.) India. Clim. Change Impact., 82, 35-45.
Haltiner, G. R. and Williams, R. T. (1980). Numerical prediction and dynamic meteorology. John Wiley and Sons, US.
IPCC. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, R.K. Pachauri and L. A. Meyer, Ed.] Geneva, Switzerland.
Metekiya, M. G. and Deogratias, M. M. (2017). Generation of climate change scenarios for precipitation and temperature at local scales using SDSM in Wami-Ruvu River Basin Tanzania. Phys. Chem. Earth, 100, 62-72.
Phuong, D. N. D., Duong, T. Q., Liem, N. D., Tram, V. N. Q., Cuong, D. K. and Loi, N. K. (2020). Projections of future climate change in the Vu Gia Thu Bon River Basin, Vietnam by using statistical downscaling model (SDSM). Water, 12(3), 755.
Shahoei, S. V., Fahiminezhad, E. and Fatehi, Z. (2020). Impact of global climate change on climate data in Ravansar Sanjabi Basin, Kermanshah Province. Environ. Water Eng., 6(1), 45–57 [In Persian]].
Wilby, R. L., Dawson, C. W. and Barrow, E. M. (2002) SDSM a decision support tool for the assessment of regional climate change impacts. Environ. Model Software, 17(2),145–157.