نوع مقاله : مقاله پژوهشی

نویسندگان

کارشناسی ارشد آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه بوعلی سینا همدان، همدان، ایران

چکیده

بررسی ویژگی‌های هیدرولیکی خاک همچون نقطه پژمردگی و ظرفیت زراعی برای مطالعه و مدل‌سازی حرکت آب و املاح در خاک لازم است. به دلیل تغییرات زمانی و مکانی این ویژگی‌ها، روش‌های غیرمستقیم در تخمین آن‌ها توسعه داده‌شده است. در این پژوهش از 10 مدل مختلف به‌منظور انتخاب بهترین مدل برای تخمین منحنی مشخصه رطوبتی (SWCC) در خاک‌های رسی، لوم رسی و لوم شنی استفاده شد. بدین منظور ابتدا SWCC خاک‌های موردمطالعه با استفاده از دستگاه صفحات فشاری به دست آمد. سپس مدل‌های مختلف بر داده‌های تجربی برازش داده شدند. هدایت هیدرولیکی اشباع نیز در آزمایشگاه اندازه‌گیری شد. نتایج نشان دادند که تمام مدل‌ها به‌جز مدل‌های کمپل و روسو عملکرد مناسبی در تخمین SWCC داشتند و از بین مدل‌های SWCC، مدل نمایی دوگانه در خاک‌های رسی، لوم رسی، لوم شنی با مقادیر SSR به ترتیب 4-10×5، 4-10×2 و 4-10؛ RMSE به ترتیب 013/0، 015/0 و 015/cm3/cm3 0؛ R2 به ترتیب 997/0، 995/0 و 998/0 بهترین عملکرد را نسبت به مدل‌های دیگر ارائه دادند. روشSSCBDTH331500 مدل Rosetta نیز دقت بالایی در تخمین هدایت هیدرولیکی اشباع داشت. نتایج این تحقیق به ارائه روش بهینه در برآورد SWCC کمک خواهد کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Assessing The Soil Water Characteristic Curve (SWCC) Models

نویسندگان [English]

  • Mansure Bayram
  • Farzane Heidari
  • Saba Saghaei

Department of Irrigation and Drainage, Faculty of Agriculture, University of Bu-Ali Sina, Hamadan, Iran

چکیده [English]

Investigating the soil hydraulic properties such as wilting point and field capacity is very important in studying and modeling water and solute in soil. Due to the spatial and temporal changes of these characteristics, recent studies have led to the development of indirect methods to estimate the soil properties. In this study, 10 models were used in order to estimate the soil water characteristics curve (SWCC) in soils of Clay, Clay loam, and Sandy loam; hence, to choose the best model. For this purpose, first the SWCC for the studied soils was calculated using pressure plate and then, models were fitted to the experimental data. Saturated hydraulic conductivity was measured in the laboratory and it was estimated by Rosetta model. The results showed that except for Campbell and Russo, all models presented the appropriate performance in estimation of SWCC. Moreover, Biexponential model fitted well with the best performance compared with other models in soils of Clay, Clay loam, and Sandy loam with the sum of the squared residuals (SSR) of 5×10-4, 2×10-4, 1×10-4 respectively, RMSE: 0.013, 0.015, and 0.015 cm3/cm3 respectively and R2: 0.997, 0.995, and 0.998 respectively. SSCBDTH331500 method in Rosetta model predicted the amount of saturated hydraulic conductivity with high accuracy. The results of this research will help to provide the optimum method for estimating SWCC.

کلیدواژه‌ها [English]

  • Soil water
  • SWCC
  • Hydraulic conductivity
  • Saturated Soil
Abbasi Y. B., Ghanbarian Alavijeh B., Liaghat A. M. and Shorafa M. (2011). Evaluation of pedotransfer functions for estimating soil water retention curve of saline and saline alkali soils of Iran, Pedosphere 21(2), 230-237.
 
American Society for Testing and Materials (ASTM) D 422. (1998). Standard test method for particle-size analysis of soils, Annual book of ASTM standard. 546pp.
 
American Society for Testing and Materials (ASTM) D3385-03. (2003). Standard test method for infiltration rate of soils in field using double-ring infiltrometer, Annual Book of ASTM Standards. 04, 08.
 
American Society for Testing and Materials (ASTM) D5084-03. (2003). Standard Test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter, ASTM International, West Conshohocken. PA.
 
Anonymous. (2011). Reported results from studies of the Hamadan Province Agricultural Research Center, Institute of Soil and Water Research, Tables 3-1 and 3-2, 3-3,3-4, Hamadan, Iran [In Persian].
 
Borgesen C. D. and Schaap M. G. (2005). Point and parameter pedotransfer functions for water retention predictions for Danish soils, Geoderma. 127(10), 154-167.
 
Brady N. C. and Weil R. R. (1999). The Nature and Properties of Soils (l2th Ed.), Prentice Hall. Upper Saddle River. New Jewry.
 
Brooks R. H. and Corey A. T. (1964). Hydraulic properties of porous media. Colorado State University, Hydrology Paper. No. 3. Fort Collins. USA.
 
Campbell G. S. A. (1974). Simple method for determining unsaturated conductivity from moisture retention data, Soil Sci., J., 117(5), 311-314.
 
Cavazza L., Patruno A. and Cirillo E. (2007). Field capacity in soils with a yearly oscillating water table, Biosys. Engin. 98(4), 364 – 370.
 
Cornelis W. M., Khlosi M., Hartmann R., Van Meirvenne M. and DeVos B. (2005). Comparison of unimodal analytical expressions for the soil-water retention curve, Soil Sci. Soc. Amer. J. 69(1), 1902–1911.
 
Foley J. L., Tolmie P. E, and Silburn D. M. (2006). Improved measurement of conductivity on swelling clay soils using a modified disc permeameter method. Aust, J. Soil Res, 44(6), 701–710.
 
Fredlund D. G. and Xing A. (1994). Equations for the Soil Water Characteristic Curve. Canadian Geotech. J., 31(8), 521-532.
 
Fredlund D. G., Sheng D. and Zaho J. (2011). Estimation of soil suction from the soil water characteristic curve. Candian Geotech. J. 48(3), 186–198.
 
Gardner W. R. (1956). Mathematics of isothermal water conduction in unsaturated soils, In Highway Research Board Special Report 40 International Symposiums on Physico-Chemical Phenomenon in Soils. 15(3), 78–87.
 
Ghaemizadeh F., Banejad H. and Bahmani O. (2014). Cadmium transport simulation under different soil conditions using the physical non-equilibrium model. Journal of Water and Soil Science, 24(4), 29-44 [In Persian].
 
Ghorbani-Dashtaki S. H. and Homaei M. (2002). Prediction of parametric hydraulic function in unsaturated soils using pedotransfer functions, Agri. Eng. Res. J. 3 (12), 3-15.
 
Jian Z. and Jianlin Y. (2005). Influences affecting the soil-water characteristic curve. Zhejiang Univ. Sci., 6A (8), 797-804
 
Khodaverdiloo H., Homaee M., Van Genuchten M. T. H. and Ghorbanidashtaki S. H. (2011). Deriving and validating pedotransfer functions for some calcareous soils. J. Hydrol., 399(20), 93-99.
 
Kosugi K.)1999(. General model for unsaturated hydraulic conductivity for soils with lognormal pore- size distribution. Soil Sci. Soc. Am. J., 63(10), 270–277.
 
Leong E. C. and Rahardjo H. (1997). Review of soil-water characteristic curve equations. J. Geotech. Geoenviron., 123(12), 1106– 117.
 
Lin B. and Cerato A. B. (2012). Investigation on soil–water characteristic curves of untreated and stabilized highly clayey expansive soils. Geotech. Geo. Eng., 30(9), 803–812.
 
Miller C. J., Yesiller N., Yaldo K. and Merayyan S. (2002). Impact of soil type and compaction conditions on soil water characteristic. J. Geoetech. Geoenviron. Eng., 10(2), 733-742.
 
Mohammadi M. H. and Vanclooster M. (2011). Predicting the soil moisture characteristic curve from particle size distribution with a simple conceptual model. VZJ, 10(2), 594-602.
 
Nam S., Gutierrez M., Diplas P., Petrie J., Wayllace A., Lu N. and Munoz J. J. (2009). Comparison of testing techniques and models for establishing the SWC of riverbank soils. Eng. Geo., 110(24), 1-10.
 
Omuto C. T. (2007). HydroMe: Estimation of soil hydraulic parameters from experimental data, R Comprehensive, Archive Network. USA.
 
Omuto C. T. (2009). Biexponential model for water retention characteristics. Geoderma., 149(16), 235-242.
 
Pishe-Pashang Y., Mir Mohammad Hoseini S.M. and Ganjian N. (2006). The Proposed Method to Estimate Soil Water Characteristic Curve for Cohesive Soils. Sharif-J. Sci. Res., 33: 77-83. [In Persian].
 
Rasoulzadeh A., Ghalehjoo G., Razavi S. and Naishabouri M.R. (2014). Evaluation of pedotransfer functions for estimating soil water characteristic curve in Naqadeh County. J. Water Res. Agricul., 28(3), 613-624 [In Persian].
 
Russo D. (1988). Determining soil hydraulic properties by parameter estimation: On the selection of a model for the hydraulic properties. Water Resour. Res., 24(8), 453–459.
 
Shirani H. (2012). Prediction of FC and PWP using neural network and statistical regression in Bardsir-Kerman area. J. Wat. Soil Sci. Isfahan University of Technology, 16(59), 141-151 [In Persian].
 
Tani M. (1982(. Thepropertiesofawater-tableriseproducedbyaone-dimensional, vertical,unsaturated flow (in Japanese with English summary). J. Jpn. For. Soc., 64(9), 409–418.
 
Tinjum J. M., Benson C. H. and Blotz L. R. (1997). Soil-water characteristic curves for compacted clays. J. Geotech. Geoenviron. Eng., 123(11), 1060–1069.
 
Too V. K., Omuto C. T., Biamah E. K. and Obiero J. P. (2014). Review of Soil Water Retention Characteristic (SWRC) Models between Saturation and Oven Dryness. Open J. Modern Hydro., 4(1), 173-182.
 
Van Genuchten M. T. H. (1980). A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44(7), 892-898.
 
Wosten J. H. M., Pachepsky Y. A. and Rawls W. J. (2001). Padotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol., 251(11), 123–150.
 
Zahrabi N., Kashkouli H.A. and Sohrab F. (2008). Estimating unsaturated soil hydraulic functions using Retc software, the 2nd National Conference on Irrigation and Drainage Network Management, Ahwaz Chamran University, Iran [In Persian]
 
 
Zhai Q. and Rahardjo H. (2012). Determination of soil–water characteristic curve variables, Computers and Geotech., 42(8), 37–43
 
Zolfaghari A., Shorafa M., Mohammadi M. H., And Abaspour H. (2013). Estimation fredlund and Zhang soil water characteristic curve parameters using a point Measured. J. Soil Res. (Soil and Water Sciences), 58(1):27-47 [In Persian].