حذف کادمیوم از محلول لیچینگ با استفاده از روش الکتروکواگولاسیون

نوع مقاله: مقاله اصلی

نویسندگان

1 استادیار، گروه پژوهشی محیط‌زیست، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

2 کارشناس ارشد، معاونت امور معادن و صنایع معدنی، سازمان صنعت، معدن و تجارت استان کرمان، کرمان، ایران

10.22034/jewe.2020.238951.1388

چکیده

در مطالعه حاضر، فرآیند انعقاد الکتروشیمیایی (الکتروکواگولاسیون) در صنایع معدنی به‌منظور حذف یکی از فلزات سنگین، کادمیوم، از محلول باردار لیچینگ کارخانه فرآوری مس، موردبررسی قرارگرفت. روش سطح پاسخ (RSM) برای بهینه‌سازی عوامل مؤثر بر حذف این فلز، در فرآیند الکتروکواگولاسیون، استفاده شد. بدین منظور جهت بهینه‌سازی آزمایش‌ها، از طرح آزمایش باکس بنکن (BBD) استفاده شد. تأثیرات سه پارامتر مستقل مانند pH (X1)، زمان الکترولیز (X2)، چگالی جریان (X3) به‌منظور بررسی حذف کادمیوم از محلول باردار لیچینگ بررسی شد. از مدل درجه دوم برای پاسخ راندمان حذف کادمیوم استفاده شد. مهم‌ترین متغیرهای مستقل و تعامل بین آن‌ها با استفاده از آزمون ANOVA ارزیابی شد. این پژوهش نشان داد که شرایط عملیاتی بهینه حذف کادمیوم 96/96% در pH اولیه: 83/6، زمان الکترولیز: min 116 و چگالی جریان: A/m262/می­باشد.. نتایج نشان داد که قابلیت فرآیند الکتروکواگولاسیون می­تواند به‌عنوان یک روش قابل‌اطمینان به‌منظور حذف کادمیوم از پساب­های صنعتی به‌ویژه در کارخانه‌های فرآوری مواد معدنی در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Removal of Cadmium from the Leaching Solution Using Electrocoagulation

نویسندگان [English]

  • Seyed Morteza Moosavirad 1
  • Ali Hasanzadeh-Sablouei 2
1 Assist. Professor, Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
2 Expert, Deputy Minister of Mines and Mining Industries, Kerman Province Industry, Mining and Trade Organization, Kerman, Iran
چکیده [English]

In the present study, the electrochemical coagulation process (electrocoagulation) in the mining industry was investigated in order to remove one of the heavy metals, cadmium, from the leaching solution of the copper processing plant. The response surface methodology (RSM) was used to optimize the factors affecting the removal of this metal in the electrocoagulation process. For this purpose, Behnken Box Designv(BBD)  was used to optimize the experiments. The effects of three independent parameters such as pH (X1), electrolysis time (X2), current density (X3) were investigated in order to investigate the removal of cadmium from the leaching solution. The quadratic model was used to respond to the cadmium removal efficiency. The most important independent variables and the interaction between them were evaluated using ANOVA test. This study showed that the optimal operating conditions for cadmium removal are 96.96% at initial pH: 6.83, electrolysis time: 116 min and current density: 69.262 A/m2. The results showed that the ability of electrocoagulation process can be considered as a reliable method to remove cadmium from industrial effluents, especially in mineral processing plants.

کلیدواژه‌ها [English]

  • Cadmium
  • Electrocoagulation
  • heavy metals
  • Removal
Acharya S., Sharma S. K., Chauhan G. and Shree D. (2017). Statistical Optimization of Electrocoagulation Process for Removal of Nitrates Using Response Surface Methodology. Indian Chem. Eng., 60(3), 269-284.
Antoine A. (1968). Principles of Nuclear Magnetic Resonance, Cambridge University Press: Cambridge, UK.
Asaithambi P., Abdul-Aziz A. and Wan Daud W. M. A. B. (2016). Integrated ozone—electrocoagulation process for the removal of pollutant from industrial effluent: Optimization through response surface methodology. Chem. Eng. Process., 105, 92–102.
Banaei A., Saadat A., Mohammad Goli M., McArdle P., Pourbasheer E. and Pargolghasemi P. (2016). Synthesis, characterization, and molecular structures of Ni (II) and Cd (II) complexes derived from dithiophosphonate. Heteroat. Chem., 27(6), 353–360.
Caroline D., Marina E., Ricardo K. and Héctor C. G. (2007). Crossed mixture design and multiple response analysis for developing complex culture medium used in recombinant protein production. Chemom. Intell. Lab. Syst., 86, 1–9.
Chen G. )2004(. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol., 38(1), 11–41.
Chen, X., Chen, G. and Yue, P. L. (2002). Novel electrode system for electroflotation ofwastewater. Environ. Sci. Technol., 36(4), 778–783.
Chou W. L., Wang C. T. and Huang K. Y. (2009). Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption, J. Hazard. Mater., 167(1–3), 467–474.
da-Silva L. F., Barbosa A. D., de Paula H. M., Romualdo L. L. and Andrade L. S. (2016). Treatment of paint manufacturing wastewater by coagulation/electrochemical methods: proposals for disposal and/or reuse of treated water. Water Res., 101, 467-475
Drouiche N., Aoudj S., Hecini M., Ghaffour N., Lounici H. and Mameri N. (2009). Study on the treatment of photovoltaic wastewater using electrocoagulation: fluoride removal with aluminium electrodes—characteristics of products. J. Hazard. Mater., 169(1–3), 65–69.
El-Salam M. M. A. and Abu-Zuid G. I. (2015). Impact of landfill leachate on the groundwater quality: a case study in Egypt. J. Adv. Res., 6(4), 579–586.
El-Samrani A. G. Lartiges B. S. and Villieras F. (2008). Chemical coagulation of combined. sewer overflow: heavy metal removal and treatment optimization. Water Res., 42(4-5), 951-960.
Fetter C.W., Boving T. and Kreamer D. (2017). Contaminant Hydrogeology. Waveland Press, Long Grove, USA.
Ghosh D., Medhi C. R. and Purkait M. K. (2011) Techno-economic analysis for the elec-trocoagulation of fluoride-contaminated drinking water. Toxic. Environ. Chem., 93 (3), 424–437.
Hasanzadeh-sablouei A. and Moosavirad S. M. (2019). Copper recovery from thickener overflow by electrocoagulation/flotation: optimization of response surface, modeling, and sludge study. Iran. J. Mine. Environ., 10(4), 1013-1029.
Huda N., Raman A. A. A., Bello M. M. and Ramesh S. (2017).  Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization. J. Environ. Eng. Manage., 204, 75–81.
Ilhan F. Apaydin O. Kurt U. Arslankaya E. and Gonullu M. T. (2007). Treatment of leachate by electrocoagulation and electrooxidation processes. In: Third International Conference on Environmental Science and Technology (ICEST), Hoston-Texas, USA, August. 6– 9.
Karichappan T., Venkatachalam S. and Jeganathan P. M. (2014a). Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology. J. Environ. Health Sci. Eng., 12(29), 1–8.
Karichappan T., Venkatachalam S. and Jeganathan P. M. (2014b).  Treatment of egg processing industry effluent using chitosan as an adsorbent. J. Serb. Chem. Soc., 79(6), 743–57.
Ke-di Y., Xian-jin Y. E., Jing S. U., Hai-feng S. U., Yun-fei L., Xiao-yan L. Ü. and Yan-Xuan W. (2013). Response surface optimization of process parameters for reduction roasting of low-grade pyrolusite by bagasse. Trans. Nonferrous Met. Soc. China., 23(2), 548−555.
Kenneth J. A., William J. B., Jagdish B., Michael J. B. and Robert C. (2008). Clean Water Act Brief. Stanford University., USA.
Kobya M., Erdem, N. and Demirbas, E. (2014). Treatment of Cr, Ni and Zn from galvanic rinsing wastewater by electrocoagulation process using iron electrodes. Desal. Water Treat., 56(5): 1191–1201.
Kurniawan T. A., Chan, G. Y. S. Lo, W. H. and Babel, S. (2006). Physicoechemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118, 83-98.
Malakootian M., Mansoorian H. J. and Moosazadeh M. (2010). Performance evaluation of electrocoagulation process using iron-rod electrodes for removing hardness from drinking water. Desal., 255(1–3), 67–71.
Moosavirad S. M. and Abaspour-Sirjani M. (2016) Assessment of electrocoagulation method to reduce total suspended solids, turbidity and hardness of thickener overflow of hematite in Gole-Gohar Sirjan. Iran J. Mine. Environ., 11(32), 47-57.
Muhammad N., Banoori N., Akbar A., Azizullah A., Khan M., Qasim M. and Rahman H. (2017). Microbial and toxic metal contamination in well drinking water: potential health risk in selected areas of Kohat, Pakistan. Urban Water J., 14(4), 394–400.
Myers R. H., Montgomery D. C. and  Adweson-Cook C. M. (2008). Response surface methodology: Process and product optimization using designed experiments. John Wiley and Sons, New York.
Nanseu-Njiki C. P., Tchamango S. R., Ngom P. C., Darchen A. and Ngameni E. (2009). Mercury (II) removal from water by electrocoagulation using aluminium and iron electrodes. J. Hazard. Mater., 168(2–3), 1430–1436.
Ozaki H., Sharma K. and Saktaywin W. (2002). Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desal., 144 (1-3), 287-294.
Razak N. H. A. Praveena S. M. Aris A. Z. and Hashim Z. (2015). Drinking water studies: a review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). J. Epidem. Global Health, 5(4), 297–310.
Roop, Ch. B. (2005)  Goyal M.Activated Carbon Adsorption. CRC Press, 497.
 Salehi M., Li X. and Whelton A. J. (2017). Metal accumulation in representative plastic drinking water plumbing systems. J.  Am. Water Works Assoc., 109,  E479–E493.
Taylor M., Caldwell J. and Sneath G. (2017). In: Current state and trend of cadmium levels in soil, freshwater and sediments across the Waikato region. Science and Policy: Nutrient Management Challenges for the Next Generation. Occasional Report No. 30. Fertilizer and Lime Research Centre, Massey University, Palmerston North, p. 11.
Tir M. and Moulai-Mostefa N. (2008). Optimization of oil removal from oily wastewater by electrocoagulation using response surface method. J. Hazard. Mater., 158(1), 107–115.
Umran T. U. and Sadettin E. O. (2015). Removal of heavy metals (Cd, Cu, Ni) by Electrocoagulation. Int. J. Environ. Sci. Dev., 6 (6), 425-429.
US-EPA (United States-Environmental Protection Agency). (2001). EPA to Implement 10 ppb Standard for Arsenic in Drinking Water, Office of Water. Fact Sheet. EPA 815-F-01-010.
Vasudevan S., Epron F., Lakshmi J., Ravichandran S., Mohan S. and Sozhan G. (2010) Removal of NO3 – from drinking water by electrocoagulation – an alternate approach. Clean. Soil. Air. Water, 38, 225–229.
Víctor-Ortega M. D., Ochando-Pulido J. M. and Martínez-Ferez A. (2016). Thermodynamic and kinetic studies on iron removal by means of a novel strong-acid cation exchange resin for olive mill effluent reclamation. Ecol. Eng., 86, 53-59.
Wu J. and Sun Z. (2016). Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities. Expos. Health, 8, 311–329.
Yaghmaeian K., Martinez S. S., Hoseini M. and Amiri H. (2016). Optimization of As (III) removal in hard water by electrocoagulation using central composite design with response surface methodology. Desalin. Water Treat., 57(57), 27827–27833.
Yin H., Chen Z., Gu Z. and Han Y. (2009). Optimization of natural fermentative medium for selenium-enriched yeast by D-optimal mixture design. LWT--Food Sci. Technol., 42(1), 327–331.
Yoo H. and Kwak S. Y. (2013). Surface functionalization of PTFE membranes with hyperbranched poly (amidoamine) for the removal of Cu2+ ions from aqueous solution. J. Membr. Sci., 448, 125–134.
Zhao S. H., Huang G., Cheng G., Wang Y. and Fua H. (2014). Hardness, COD and turbidity removals from produced water by electrocoagulation pretreatment prior to Reverse Osmosis membranes. Desal., 344: 454–462.
Zhu Q. and Li Z. (2015). Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water. Chem. Eng. J., 281, 69-80.