توسعه روش DRASTIC با در نظر گرفتن کاربری اراضی به‌منظور تحلیل پتانسیل آلودگی آبخوان مناطق نیمه‌خشک

نوع مقاله: مقاله اصلی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد، عضو باشگاه پژوهشگران جوان و نخبگان، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

2 استادیار، گروه مهندسی عمران، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

10.22034/jewe.2020.236463.1374

چکیده

ارزیابی آسیب‌پذیری آب‌های زیرزمینی با هدف اولویت‌بندی این منابع از منظر بهره‌برداری، مدیریت و کنترل میزان آلودگی‌های واردشده در مناطق مختلف دارای اهمیت می‌باشد. هدف از این پژوهش ارزیابی آسیب‌پذیری کیفی آبخوان دشت بیرجند با استفاده از مدل DRASTIC-LU بود. در این پژوهش مدل پایه DRASTIC با پارامتر کاربری اراضی توسعه‌یافته، استفاده‌شد. در این روش پارامترهای مدل پایه شامل عمق آب زیرزمینی، تغذیه خالص، محیط آبخوان، جنس خاک، توپوگرافی، مواد تشکیل‌دهنده منطقه سیرنشده و هدایت هیدرولیکی به همراه متغیر کاربری اراضی به‌عنوان توسعه مدل بر اساس وزن­های استاندارد، در محیط GIS تحلیل و نقشه پهنه­بندی آسیب­پذیری تهیه شد. نقشه پهنه‌بندی آسیب‌پذیری مدل DRASTIC-LU، نشان داد که 27/62، 07/25، 17/10 و 38/2% از مساحت منطقه به ترتیب دارای آسیب‌پذیری کم تا متوسط، متوسط تا زیاد، کم‌ و زیاد است. همچنین، تحلیل حساسیت مدل مورداستفاده جهت ارزیابی وزن‌های اختصاص‌یافته صورت گرفت. جهت صحت سنجی مدل، همبستگی مدل با غلظت نیترات انجام شد؛ همبستگی 86% به‌دست‌آمده، نشان‌دهنده همبستگی مناسب این مدل با غلظت نیترات به‌عنوان شاخص آلودگی آب‌های زیرزمینی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of DRASTIC Method Considering Land Use to Analyze the Potential of Aquifer Pollution in Semi-Arid Regions

نویسندگان [English]

  • Mobin Eftekhari 1
  • Mohammad Akbari 2
1 M.Sc. Alumni, Department of Civil Engineering, and Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
2 Assist. Professor. Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
چکیده [English]

Groundwater vulnerability assessment is important in order to prioritize these resources from the perspective of exploitation, management and control of pollution in different areas. The purpose of this study was to evaluate the qualitative vulnerability of Birjand plain aquifer using DRASTIC-LU model. In this research, the DRASTIC base model with the land use parameter of the developed lands was used. In this method, the basic model parameters including groundwater depth, net nutrition, aquifer environment, soil type, topography, unsaturated area constituents, and hydraulic guidance were analyzed in GIS environment along with land use variable as a model development based on standard weights and the vulnerability zoning map was prepared. Vulnerability zoning map of DRASTIC-LU model showed that 62.27, 25.07, 17.17, and 2.38% of the area have low to medium, medium to high, low and high vulnerability, respectively. In addition, the sensitivity analysis of the model used to evaluate the assigned weights was performed. To validate the model, the correlation of the model with the nitrate concentration was performed; the obtained correlation of 86% indicated the appropriate correlation of this model with the nitrate concentration as an indicator of groundwater pollution.

کلیدواژه‌ها [English]

  • Birjand plain
  • Groundwater
  • Semi-arid regions
  • Sensitivity analysis
  • vulnerability
Ahmadi A., and Aberoumand M. (2009). Vulnerability of Khash-Plain aquifer, eastern Iran, to pollution using geographic information system (GIS). J. Geotech. Geol., 5(1),1-11 [In Persian].
Alam F., Umar R., Ahmed S. and Dar F. A. (2014). A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arab. J. Geosci., 7(3), 927-937.
Al Kuisi M., El-Naqa A., and Hammouri N. (2006). Vulnerability mapping of shallow groundwater aquifer using SINTACS model in the Jordan Vally area, Jordan. Environ. Geol., 50, 651-667.
Aller L., Bennett T., Lehr J. H., Petty R. J. and Hackett G. (1987). DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. Kerr Environmental Research Laboratory, U.S. Environmental Protection Agency Report (EPA), 600/2.87, 1-641.
Alley W. M. (1993). Regional ground-water quality. Van Nostrand Reinhold, Newyork, xix. 634 p.
Arezoomand omidi langrudi M., Khashei Siuki A., Javadi S. and Hashemi S. R. (2015). Groundwater vulnerability assessment by the use of drastic-new modified model (case study: Kuchesfehan-Astane plain). Iran. J. Irrig. Drain., 9(1), 75-62 [In Persian].
Babiker I. S., Mohamad A., Mohamed A., Hiyama T. and Kato K. (2005). A GISbased DRASTIC model for assessing aquifer vulnerability in Kakamingahara Heights, Gifu prefecture, Central Japan. Sci. Total Environ., 345, 127–140.
Balakrishnan P., Saleem A. and Mallikarjun N. D. (2011). Groundwater quality mapping using geographic information system (GIS): A case study of Gulbarga City, Karnataka, India. Africa. J. Environ. Sci. Technol., 5(12), 1069-1084.
Bartzas G., Tinivella F., Medini L., Zaharaki D. and Komnitsas K. (2015). Assessment of groundwater contamination risk in an agricultural area in north Italy. Inform. Process. Agri., 2(2), 109-129.
Eftekhari M., Madadi K., and Akbari M. (2019). Monitoring the fluctuations of the Birjand Plain aquifer using the GRACE satellite images and the GIS spatial analyses. Watershed Manag. Res. J., 32(4), 51-65 [In Persian].
Fallahzadeh R., Azimzadeh H., Khosravi R., Almodaresi S.A., Khodadadi M., Eslami H. and Derakhshan Z. (2016). Using geographic information system (GIS) and remote sensing (RS) in zoning nitrate concentration in the groundwater of Birjand, Iran. J. Adv. Environ. Health Res., 4(3), 129-134.
Farpoor A., Ramezani Y., and Akbarpour A. (2019). Numerical simulation of chromium changes trend in aquifer of Birjand plain. Iran. J. Irrig. Drain., 12(5), 1203-1216 [In Persian].
Fetter C. W. (1999). Contaminant hydrogeology, 2nd ed, Prentice HallInc, NJ. pp. 506.
Habibi Davijani M., Nadjafzadeh Anvar A. and Banihabib M. (2014). Locating water desalination facilities for municipal drinking water based on qualitative and quantitative characteristics of groundwater in Iran’s desert regions. Wat. Resour. Manag., 28(10), 3341-3353.
Hamza M. H., Added A., France S. and Rodrı´guez R. (2007). Validity of the vulnerability methods DRASTIC, SINTACS and SI applied to the study of nitrate pollution in the phreatic aquifer of Metline–Ras Jebel–Raf Raf (northeastern Tunisia). C. R. Geosci., 339(7), 403-505.
Hassanpour M. and Khozeymehnezhad H. (2018). Placement of nutrient wells for artificial nutrition and improvement of aquifer quality in Birjand plain using treated wastewater. Iran. J. Res. Environ. Health, 4(3), 215-226 [In Persian].
Huan H., Wang J. and Teng Y. (2012). Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Sci. Total Environ., 440(1), 14-23.
Jamrah A., Al-Futaisi A., Rajmohan N. and Al-Yaroubi S. (2007). Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ. Monit. Assess., 147, 125–138.
Javadi S., Kavehkar N., Mousavizadeh M. H. and Mohammadi K. (2011). Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. J. Agri., Sci. Technol., 13(2), 239-249.
Lodwick W. A., Monson W. and Svoboda L. (1990). Attribute error and sensitivity analysis of map operations in geographical informations systems: suitability analysis. Int. J. Geogr. Inform. Syst., 4(4), 413-428.
Lui Z. J., Hallberg G. R., Zimmerman D. L. and Libra R. D. (1997). Detecting changes in the spatial distribution of nitrate concentration in groundwater. J. Am. Wat. Resour. Assoc., 33(6), 1209-1218.
Mosazadeh H., Rezaei A. and Emami H. (2018). Investigation of temporal and spatial distribution of groundwater nitrate contamination in Birjand plain and aquifer. National conference on water resources management strategies and environmental challenges. Sari University of Agricultural Sciences and Natural Resources. [In Persian].
Nasrabadi T., Baghvand A. and Vosoogh A. (2015). Groundwater quality determination regarding major anions and cations (Case study of an aquifer in the Lut Desert, Iran). Pollut., 1(1), 45-54.
Oroji B. and Solgi I. (2016). Vulnerability assessment of asadabad (Hamadan) plain groundwater by GIS. Environ. Sci., 14(1), 91-104 [In Persian].
Piscopo G. (2001). Groundwater vulnerability map explanatory notes - Lachlan catchment. NSW Department of Land and Water Conservation, Parramatta, NSW, Australia, 14 p.
Rahimzade Qivi M., Hamzeh S. and Kardan Moghadam H. (2015). Identification of vulnerability potential of groundwater quality in Birjand Plain using DRASTIC model and its calibration using AHP. Physic. Geogra. Res. Quart., 47(3), 481-498 [In Persian].
Shakoor A., Khan Z. M., Farid H. U., Sultan M., Ahmad I., Ahmad N. and Ali M. U. (2020). Delineation of regional groundwater vulnerability using DRASTIC model for agricultural application in Pakistan. Arab. J. Geosci., 13(4), 1-12.
Sheykh Vanloo M., Akbari G., Nakhei M. and Etebari B. (2006). Investigation and evaluation of inherent vulnerability of Birjand plain aquifer using DRASTIC model. The first regional water conference, Behbahan branch of Islamic Azad University, Behbahan, Iran [In Persian]
Soper R. C. (2006). Groundwater vulnerability to agrochemicals: a GIS-based DRASTIC model analysis of Carroll, Chariton, and Saline counties, Missouri USA. Diss. University of Missouri-Columbia.
Tesoriero A. J., Inkpen E. L. and Voss F. D. (1998). Assessing ground-water vulnerability using logistic regression. Proceedings for the source water assessment and protection 98 conference, Dallas, TX, 157– 165.
Vrba J. and Zaporozec A. (1994). Guidebook on mapping groundwater vulnerability. Hannover, H. Heise.
Yang Y. S. and Wang L. (2010). Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: a case study. Hydrol. Sci. J., 55(7), 1206-1216.
Zafane D., Gharbi F. and Douaoui A. A. (2018). New model (DRASTIC-LU) for evaluating groundwater vulnerability in alluvial aquifer of upper Cheliff (Algeria). Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 1(1), 615-617.