Alam A. T. M., Rahman M. S. and Saadat A. H. M. (2013). Monitoring meteorological and agricultural drought dynamics in Barind region Bangladesh using standard precipitation index and Markov chain model. Int. J. Geomat. Geosci., 3(3), 511-524.
Azimi S., Moghaddam M. A. and Monfared S. H. (2019). Prediction of annual drinking water quality reduction based on Groundwater Resource Index using the artificial neural network and fuzzy clustering. J. Contam. Hydrol., 220, 6-17.
Blenkinsop S. and Fowler H. J. (2007). Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models. J. Hydrol., 342(1), 50-71.
Chamanpira G., Zehtabian G., Ahmadi H. and Malekian A. (2014). Effect of drought on groundwater resources in order to optimize utilization management, case study: Plain Alashtar. Watershed Eng. Manag., 6(1), 10-20 [In Persian].
Duggins J., Williams M., Kim D. Y. and Smith E. (2010). Changepoint detection in SPI transition probabilities. J. Hydrol., 388(3), 456-463.
Faryabi M. and Mozaffarizade J. (2017). Hydrogeological drought management index (HDMI) as a tool for groundwater resource management under drought conditions (case study: Dayyer-Abdan district, Boushehr province). Iran. J. Ecohydrol., 4(3), 737-748 [In Persian].
Habibi B., Meddi M., Torfs P. J., Remaoun M. and Van Lanen H. A. (2018). Characterisation and prediction of meteorological drought using stochastic models in the semi-arid Chéliff–Zahrez basin (Algeria). J. Hydrol. Region. Stud., 16, 15-31.
Kim D. W., Byun H. R. and Choi K. S. (2009). Evaluation, modification, and application of the Effective Drought Index to 200-Year drought climatology of Seoul, Korea. J. Hydrol., 378(1), 1-12.
McKee T. B., Doesken N. J. and Kleist J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology. Boston, MA: Am. Meteorol. Soc.., 17(22), 179-183.
Mendicino G., Senatore A. and Versace P. (2008). A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean climate. J. Hydrol., 357(3-4), 282-302.
Paulo A. A., Ferreira E., Coelho C. and Pereira L. S. (2005). Drought class transition analysis through Markov and Loglinear models, an approach to early warning. Agri. Wat. Manag., 77(1-3), 59-81.
Paulo A. A. and Pereira L. S. (2007). Prediction of SPI drought class transitions using Markov chains. Water Resour. Manag., 21(10), 1813-1827.
Ramezani Y., Khashei-Siuki A. and Tahroudi M. N. (2020). Spatial distribution of the daily, monthly, and annual precipitation concentration indices in the Lake Urmia basin, Iran. IDŐJÁRÁS, 124(1), 73-95.
Ramezani Y., Tahroudi M. N. and Ahmadi F. (2019). Analyzing the droughts in Iran and its eastern neighboring countries using copula functions. IDŐJÁRÁS, 123(4), 435-453.
Rebetez M., Mayer H., Dupont O., Schindler D., Gartner K., Kropp J. P. and Menzel A. (2006). Heat and drought 2003 in Europe: a climate synthesis. Annal. Forest Sci., 63(6), 569-577.
Seyf M., Mohammadzadeh H., Mosaedi A. and Sayad H. (2012). Evaluation of drought effects on groundwater resources of Fasa Plain aquifer using critical rainfall indicators, groundwater resources, and critical electrical conductivity. J. Wat. Res. Manag., 5(13), 74-57 [In Persian].
Seyfi M., Mohammad Zadeh H. and Mosaedi A. (2012). Evaluating the impacts of drought on groundwater resources in fasa aquifer using SPI, GRI and SECI. Wat. Eng., 5(13), 55-72 [In Persian].
Sheffield J. and Wood E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn., 31(1), 79-105.
Yeh H. F. and Hsu H. L. (2019). Using the Markov chain to analyze precipitation and groundwater drought characteristics and linkage with atmospheric circulation. Sustain., 11(6), 1817.