حذف یون فلزی نیکل(II) از محلول‌های آبی به وسیله جاذب نانوساختار MCM-41 اصلاح شده با نمک فلزی ZnCl2

نوع مقاله: مقاله اصلی

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی، دانشگاه فردوسی مشهد، مشهد، ایران

2 'گروه مهندسی شیمی، دانشکده فنی، دانشگاه کردستان، سنندج، ایران

چکیده

سنتز جاذب MCM-41 به روش هیدروترمال در حضور اتانول به‌عنوان حلال و ماده فعال سطحی کمکی و در محیط قلیایی انجام پذیرفت. جاذب معدنی ZnCl2-MCM-41  به روش پیوند کووالانسی با توزیع مواد در حلال تولوئن و از اندرکنش بین ذره‌های ZnCl2 با گروه‌های سیلانول روی دیوارۀحفره‌های MCM-41 تهیه شد. تعیین مشخصات این جاذب با استفاده از آزمایش‌های جذب نیتروژن، XRD، طیف سنجی FTIR  و SEM انجام شد. سطح فعال  MCM-41بر اساس معادلۀBET برابر با m2/g 1099 به‌دست آمد که پس از تثبیت ذره‌های ZnCl2 روی سطح MCM-41 این مقدار به m2/g 602 کاهش یافت. اثر پارامترهای دما، pH، زمان تماس و غلظت اولیۀیون نیکل(II) بر روی میزان جذب یون نیکل(II) بررسی گردید. ایزوترم جذب لانگ‌مویر بهتر از ایزوترم فروندلیچ رفتار داده‌های تجربی را پیش‌بینی نمود که نشان دهندۀجذب تک‌لایه‌ و همگن یون‌ نیکل(II) روی جاذب معدنی سنتز شده ‌است. در شرایط بهینه، بیش‌ترین ظرفیت جذب یون نیکل(II) با استفاده از ایزوترم جذب لانگ مویر mg/g 303 به‌دست آمد. بررسی سینتیک فرایند نشان داد که جذب یون نیکل(II) روی جاذب ZnCl2-MCM-41 را مدل شبه مرتبه دوم بهتر از مدل شبه مرتبه اول پیش‌بینی می‌کند ایزوترم دوبینین رادوشکوویچ انرژی آزاد فرایند برابرkJ/mol 8/9 بدست آمد که بیانگر شیمیایی بودن مکانیسم جذب یون نیکل(II) روی جاذب سنتز شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Ni(II) Removal from Aqueous Solutions using Nanostructured Sorbent MCM-41 Modified by Zncl2

نویسندگان [English]

  • Foad Raji 1
  • Asma Rahimi 2
1 Department of Chemistry Engineering, Faculty of Technology, Mashhad University, Mashhad, Iran
2 Department of Chemistry Engineering, Faculty of Technology, University of Kurdistan, Sanandaj, Iran
چکیده [English]

In this study, MCM-41 was prepared via hydrothermal method in presence of ethanol as a co-solvent and co-surfactant in alkaline media. Inorganic sorbent ZnCl2-MCM-41 was synthesized via covalent grafting method by dispersion of samples into pure toluene for solid state interaction between silanol groups of MCM-41 surface and ZnCl2 particles. Samples were characterized by nitrogen adsorption analysis, XRD, BET surface area, and FTIR spectrometry. MCM-41 BET surface area measured was 1099 m2/g, which was later reduced to 602 m2/g after incorporation of ZnCl2 particles onto MCM-41 surface. Effect of different experimental conditions such as solution temperature, pH, contact time, and initial concentration of Ni(II) ions were investigated on the amount of nickel adsorption. For experimental data, the Langmuir isotherm showed a better fit than Freundlich isotherm, which indicates that nickel adsorption onto inorganic sorbent was homogeneous and monolayer. At optimum conditions, maximum adsorption capacity of Ni(II) by sorbent obtained was 303 mg/g according to Langmuir isotherm. Pseudo-second order model predicted kinetic of nickel adsorption onto synthesized sorbent better than other models. Free energy was 9.8 kJ/mol determined by Dubinin-Radushkevich model, which confirms chemical nature of nickel adsorption onto synthesized sorbent.

کلیدواژه‌ها [English]

  • MCM-41
  • Adsorption
  • ZnCl2
  • Ni(II) ion
Al-Rub F. A., El-Naas M., Benyahia F. and Ashour I. (2004). Biosorption of nickel on blank alginate

beads, free and immobilized algal cells. Process Biochem., 39(17), 1767-1773.

 

Anirudhan T., Divya L. and Ramachandran M. (2008). Mercury (II) removal from aqueous solutions

and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery. J.

Hazard. Mater., 157(3), 620-627.

 

Basso M., Cerrella E. and Cukierman A. (2002). Activated carbons developed from a rapidly

renewable biosource for removal of cadmium (II) and nickel (II) ions from dilute aqueous

solutions. Indust. Eng. Chem. Res.,41(5), 180-189.

 

Bailey S. E., Olin T. J., Bricka R. M. and Adrian D. D. (1999). A review of potentially low-cost

sorbents for heavy metals. Wat. Res., 33(3), 2469-2479.

 

Beck J., Vartuli J., Roth W., Leonowicz M., Kresge C., Schmitt K., Chu C., Olson D. H. and Sheppard

E. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. J.

Am. Chem. Society, 114(9), 10834-10843.

 

Dubinin M. M., Zaverina E. and Radushkevich L. (1947). Sorption and structure of active carbons. I.

Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii, 21(3), 151–162

 

Delacôte C., Gaslain F. O., Lebeau B. and Walcarius A. (2009). Factors affecting the reactivity of

thiol-functionalized mesoporous silica adsorbents toward mercury (II). Talanta, 79(5) 877-886.

 

Grün M., Lauer I. and Unger K. K. (1997). The synthesis of micrometer‐and submicrometer‐size

spheres of ordered mesoporous oxide MCM‐41. Adv. Mater., 9(2), 254-257.

 

Ghasemi M., Khosroshahy M. Z., Abbasabadi A. B., Ghasemi N., Javadian H. and Fattahi M. (2015).

Microwave-assisted functionalization of Rosa Canina-L fruits activated carbon with

tetraethylenepentamine and its adsorption behavior toward Ni (II) in aqueous solution: Kinetic,

equilibrium and thermodynamic studies. Powder Technol., 274(12), 362-371.

 

Hakami O., Zhang Y. and Banks C. J. (2012). Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Wat. Res., 46(4), 3913-3922.

 

Hasar H. (2003). Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater., 97(8), 49-57.

 

Idris S. A., Harvey S. R. and Gibson L. T. (2011). Selective extraction of mercury (II) from water samples using mercapto functionalised-MCM-41 and regeneration of the sorbent using microwave digestion. J. Hazard. Mater., 9(2), 171-176.

 

Kadirvelu M., Kanmani N., Senthilkumar A. and Subburam J. (2004). Separation of mercury (II) from aqueous solution by adsorption onto an activated carbon prepared from Eichhornia crassipes. Adsorp. Sci. Technol.,22(5), 207-222.

 

Kiran I., Akar T., Ozcan A. S., Ozcan A. and Tunali S. (2006). Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions. Biochem. Eng. J., 31(3), 197-203.

 

Khalil K. M. S. (2007). Cerium modified MCM-41 nanocomposite materials via a nonhydrothermal direct method at room temperature. J. Colloid Interface Sci., 315(5), 562-568.

 

Kula I., Uğurlu M., Karaoğlu H. and Celik A. (2008). Adsorption of Cd (II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresour. Technol., 99(4), 492-501.

 

Lohani M. B., Singh A., Rupainwar D. and Dhar D. (2008). Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (II) from aqueous solutions. J.Hazard. Mater., 159(5), 626-629.

 

Liu J., Yin D., Qin L. and Yin D. (2005). New catalysts for diels-alder reaction of myrcene and acrolein prepared by solid-state interaction, of MCM-41 silica and ZnCl2. Studies Surf. Sci. Catal., 156(3) , 815-822.

 

Maibach H. I. and Menné T. ( 1989). Nickel and the Skin: Immunology and Toxicology. CRC Press.101(2), 20-35.

 

Pereira L. S., Cordery I. and Iacovides I. (2009). Coping with water scarcity: Addressing the challenges. Springer Science and Business Media.

 

Pérez-Quintanilla D., Sánchez A., del Hierro I., Fajardo M. and Sierra I. (2007). Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-1-methyltetrazole. J. Colloid a Interface Sci., 313(3), 551-562.

 

Pérez-Quintanilla D., Del Hierro I., Fajardo M. and Sierra I. (2006). 2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media. J. Hazard. Mater., 134(3), 245-256.

 

Puanngam M. and Unob F. (2008). Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg (II) ions. J. Hazard. Mater., 154(5), 578-587.

 

Ravikovitch P. I., Haller G. L. and Neimark A. V. (1998). Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts., Adv. Colloid Interface Sci., 76(6), 203-226.

 

Raji F. and Pakizeh M. (2013). Study of Hg (II) species removal from aqueous solution using hybrid ZnCl 2-MCM-41 adsorbent. Appl. Surf. Sci., 282(8), 415-424.

 

Selvam P., Bhatia S. K. and Sonwane C. G. (2001). Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Indust. Eng. Chem. Res., 40(3), 3237-3261.

 

Uğurlu M., Kula I., Karaoğlu M. H. and Arslan Y. (2009). Removal of Ni (II) ions from aqueous solutions using activated‐carbon prepared from olive stone by ZnCl2 activation. Environ.Progress Sustain. Energy, 28(4), 547-557.

 

Viraraghavan T. and de Maria F. (1998). Alfaro, Adsorption of phenol from wastewater by peat, fly ash and bentonite. J. Hazard Mater, 57(7), 59-70.

 

Wu C., Kong Y., Gao F., Wu Y., Lu Y., Wang J. and Dong L. (2008). Synthesis, characterization and catalytic performance for phenol hydroxylation of Fe-MCM41 with high iron content. Microporous and Mesoporous Mater., 113(9), 163-170.

 

Zhai D., Zhang K., Zhang Y., Sun H. and Fan G. (2012). Mesoporous silica equipped with europium-based chemosensor for mercury ion detection: synthesis, characterization, and sensing performance. Inorganica Chimica Acta, 387(6), 396-400.

 

Raji F., Saraeian A., Pakizeh M. and Attarzadeh F. (2015). Removal of Pb (ii) from aqueous solution by mesoporous silica MCM-41 modified by ZnCl2: kinetics, thermodynamics, and isotherms. RSC Adv., 5(1), 37066-37077.