تأثیر تغییر اقلیم جهانی بر داده‌های اقلیمی در حوضه روانسر سنجابی استان کرمانشاه

نوع مقاله: مقاله اصلی

نویسندگان

1 گروه مهندسی و مدیریت منابع آب، دانشکده عمران، مؤسسه آموزش عالی توسعه دانش سنندج، سنندج، ایران

2 استادیار، دانشگاه پیام نور، واحد سبزوار، سبزوار، ایران

3 دانشجوی کارشناسی ارشد، گروه مهندسی و مدیریت منابع آب، موسسه غیرانتفاعی توسعه دانش سنندج، سنندج، ایران

10.22034/jewe.2020.219388.1348

چکیده

در این پژوهش به بررسی تأثیر تغییر اقلیم بر داده‌های دما و باران در حوضه روانسر سنجابی استان کرمانشاه پرداخته شد. برای این منظور با استفاده از داده‌های اقلیمی دما و بارندگی طی سال‌های 1979-2005 (دوره مشاهداتی)، مقادیر این متغیرها در سال‌های 2041-2100 (دوره پیش‌بینی) تحت سه سناریوی RCP8.5، RCP4.5 و RCP2.6 و مدل گردش عمومی جو CanESM2، پیش‌بینی شد. برای ریزمقیاس کردن داده‌های موردبررسی در حوضه موردمطالعه، از مدل SDSM استفاده شد. نتایج نشان داد که مقادیر میانگین بارندگی سالانه، دماهای حداکثر و حداقل سالانه در حوضه روانسر سنجابی در دوره پیش‌بینی 2041-2100 افزایش خواهند یافت. بیش­ترین مقادیر پیش‌بینی‌شده این متغیرها مربوط به سناریوی RCP8.5 می‌باشد، به­طوری‌که درصد افزایش میانگین بارندگی در ماه دسامبر با توجه به این سناریو و در دوره‌های پیش‌بینی 2041-2070 و 2100-2071 به­ترتیب 153 و 6/159% در مقایسه با میانگین بارش در دوره مشاهداتی می‌باشد. با  در نظر گرفتن نتایج این پژوهش انتظار می‌رود که در راستای مدیریت صحیح منابع آب و تأثیر تغییر اقلیم بر آن، چشم‌اندازی درست بر وضعیت منابع آب این حوضه در آینده پیش روی مدیران منابع آب قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Impact of Global Climate Change on Climate Data in Ravansar Sanjabi Basin, Kermanshah Province

نویسندگان [English]

  • Seyed Vahid Shahoei 1
  • Elham Fahiminezhad 2
  • Zaniar Fatehi 3
1 Assist. Professor, Department of Water Engineering and Management, Faculty of Civil Engineering, Tose Danesh Institute of Higher Education, Sanandaj, Iran
2 Assist. Professor, Payame Noor University of Sabzevar, Sabzevar, Iran
3 M.Sc. Student, Department of Water Engineering and Management, Faculty of Civil Engineering, Tose Danesh Institute of Higher Education, Sanandaj, Iran
چکیده [English]

In this study, the effect of climate change on temperature and rainfall data in the Kermanshah Sanjabi basin was investigated. For this purpose, using climate and temperature data from 1979-2005 (observation period), the values ​​of these variables in 2041-2100 (forecast period) were predicted under three scenarios RCP8.5, RCP4.5 and RCP2.6 and CanESM2 atmospheric general circulation model. The SDSM model was used to fine-tune the survey data in the study area. The results showed that the mean annual precipitation, maximum and minimum annual temperatures in the squared Ravansar basin will increase in the forecast period of 2041-2100. The most predicted values ​​of these variables belong to the RCP8.5 scenario so that according to this scenario, the average increase in precipitation in December, in the forecast periods 2041-2070 and 2071 2100 is 153 and 159.6%, respectively, compared with the average rainfall in the observation period. Based on the results of this study, it is expected that in order to properly manage the water resources of the RWC due to the impact of climate change, a proper perspective on the future status of water resources in the watershed will be presented to water resource managers in the future.

کلیدواژه‌ها [English]

  • Atmospheric general circulation model
  • Downscale
  • Global warming
  • Simulation
  • Water resources
Asakereh H. and Kiani H. (2019). Evaluation of SDSM model performance in simulating the average temperature of Kermanshah City. Sci. Res. Quart. Geogr. Data, 27, 50-62 [In Persian].
Hesami N. and Asakereh H. (2018). Assessing the application of artificial neural networks and SDSM models to simulate the minimum and maximum temperatures at Isfahan Station. J. Geogr. Res. Desert Areas, 6(2), 133-158 [In Persian].
Babaian E., Najaf Z., Zabolabbasi F., Habibitookhandan M., Adab H. and Malboosi S. (2010). Country Climate change assessment in the period of 2011-2039 using the exponential micro scale exposure climate model (EHO-G), Geogr. Develop. J., 7(16), 135-152 [In Persian].
Babaeifeini O., Ghasemi E. and Fattahi E. (2017). Investigating the impact of climate change on the trend of Iran land limits. J. Spatial Anal. Environ. Hazard., 1(3), 85-103 [In Persian].
Dehghan Z., Fathian F. and Eslamian S. (2015). Comparative evaluation of SDSM, IDW and LARS-WG models. J. Water Soil, 29(5), 1376-1390 [In Persian].
Easterling D. R., Meehl G. A., Parmesan C., Changnon S. A., Karl T. R. and Mearns L.O. (2000). Climate extremes: observations, modeling, and impacts. Sci., 289, 2068-2074.
Fatehi A., Jabarian B. and Mohhamdzadeh N. (2017). Downscaling the atmospheric general circulation model's data and its application in simulating the climatic parameters (Case study: Guilan province). J. Nat. Environ., 1, 143-158 [In Persian].
Hajimohhamdi M., Azizian A. and Ghermezcheshmeh B. (2018). Evaluation of the impact of climate change on runoff in Kan Watershed. Watershed Eng. Manage., 10(2), 144-156 [In Persian].
IPCC. (2007). Summary for Policymarkers, in: Climate Change (2007). Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M. and Miller H. L. eds. (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental.
Kaviani M. and Alijani B. (1993). Applied climatology. Samt Publisher: 254p.
Kazemirad L. and Mohhamdi V. (2016). Climate change assessment by using LARS-WG Model in Gilan Province (Iran). Geogr. Environ. Hazard., 5, 55-74 [In Persian].
Khaliliaghdam N., Mosaedi A., Soltani A. and Kamkar B. (2013). Evaluation of LARS-WG model in prediction of some climate parameters. Soil Water Conserv. Res. J., 19(4), 85-102 [In Persian].
SajadiBami Y. and Neshat A. (2017). The prediction of the climate change effect on the temperature parameter by the general circulation models HadCM3: a case study of Kerman and Bam. Water Resour. Eng., 9(30), 51-62 [In Persian].
Shahoei S. V., Porhemmat J., Sedghi H., Hosseini M. and Saremi A. (2018). Monthly runoff simulation through SWAT hydrological model and evaluation of model in calibration and validation periods, case study: Ravansar Sanjabi Basin in Kermanshah Province, Iran. Watershed Eng. Manage., 10(3), 464-477 [In Persian].
Sillmann J. and Roeckner E. (2008). Indices for extreme events in projections of anthropogenic climate change. Climat. Change, 86, 83-104.
Wilby R. L., Conway D. and Jones P. D. (2002). Prospects for downscaling seasonal precipitation variability using conditioned weather generator parameters. Hydrol. Process., 16, 1215-1234.
Zhang X. and Yang F. (2004). RClimDex (1.0) User Manual. Climate Research Branch Environment Canada Downsview, Ontario Canada.
Zulkaranian, H and Arun H. S. (2012). Application of statistical downscaling model for long lead rainfall prediction in kurau river catchment of Malaysia. Malaysian J. Civil Eng., 24(1), 1-12.