,عملکرد دستگاه خودکار آشکارساز جبهه رطوبتی

نوع مقاله: مقاله اصلی

نویسندگان

1 استادیار بخش تحقیقات آبیاری و فیزیک خاک، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 مربی پژوهشی بخش تحقیقات آبیاری و فیزیک خاک، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 محقق بخش تحقیقات آبیاری و فیزیک خاک، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

10.22034/jewe.2020.218691.1345

چکیده

به‌منظور افزایش بهره‌وری آب در سطح مزارع و هوشمند سازی آبیاری یکی از فاکتورهای مهم ایجاد سامانه‌هایی است که بتوانند با دقت مناسب و قابل‌قبول مقدار رطوبت خاک را اندازه‌گیری نمایند. در این ‌ارتباط دستگاه اندازه‌گیری جبهه رطوبتی ساخته‌شده در موسسه تحقیقات خاک و آب در سه بافت سبک (LT)، متوسط (MT) و سنگین (HT) و در سه سطح شوری آب آبیاری غیر شور (S0)، 5(S1) و dS/m 10(S2) مورد ارزیابی قرار گرفت. پس از جمع‌آوری داده­ها نسبت به تحلیل آماری و تفسیر اقدام و از نتایج آن در مزرعه استفاده شد. سپس برای ارزیابی و واسنجی دستگاه در شرایط مذکور، اقدام به اندازه‌گیری هم‌زمان اعداد دستگاه و نمونه‌گیری از خاک در اعماق معین به فواصل زمانی h 24 شد. پس از جمع‌آوری داده­های مربوط به زمان­های رسیدن جبهه رطوبتی به اعماق خاک و تغییرات رطوبت خاک با نمونه‌گیری خاک و دستگاه آشکارساز جبهه رطوبتی خاک تجزیه آماری صورت پذیرفت. نتایج نشان داد که دستگاه در بافت‌های مختلف و شوری‌های متفاوت واکنش نشان می­دهد. همچنین حساسیت حسگرهای آن به تغییرات ناگهانی رطوبت خاک ناشی از رسیدن جبهه رطوبتی به عمق معینی از خاک دارای دقت قابل قبولی می‌باشد. نتایج آماری نشان داد که دستگاه در تعیین رطوبت خاک در شرایط غیر شور حدود 6 تا 9%، در شرایط استفاده از آب‌شور dS/m 5، 28 تا 41% و در شرایط استفاده از آب‌شور dS/m 10، 31 تا 37% دارای خطا می­باشد. شاخص کارایی مدل نیز نشان داد که این دستگاه در شرایط غیرشور با کارایی متوسط 75/0 بسیار کاربردی بوده و در شرایط شور با شاخص کارایی منفی غیرقابل توصیه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating Automatic Detector of Wetting Front for Monitoring Water Movement in Soil

نویسندگان [English]

  • Arash Tafteh 1
  • Saeed Ghalebi 2
  • Sina Mallah 3
1 Assist. Professor, Department of Irrigation and Soil Physics, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
2 Lecturer, Department of Irrigation and Soil Physics, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
3 Researcher, Department of Irrigation and Soil Physics, Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
چکیده [English]

In order to increase water productivity at farm level and smart irrigation, appropriate systems are essential so that can measure the moisture content in a proper and acceptable accuracy. In this regard, the wetting front device was made at the Soil and Water Research Institute and was evaluated in 3 textures: light, medium, and heavy at 3 levels of water salinity: no salinity (S0), 5(S1), and 10 (S2) dS/m. Then, to evaluate and measure the device in the mentioned conditions, it was tried to simultaneously measure the device numbers and soil sampling at certain depths at intervals of 24 h. After collecting data on the time of arrival of the moisture front to the soil depth and changes in soil moisture, statistical analysis was performed by soil sampling and soil detection device. The results showed that the device reacts in different textures and salinities. Moreover, the sensitivity of its sensors to sudden changes in soil moisture due to the arrival of the moisture front to a certain depth of soil has acceptable accuracy. Statistical results showed that the device has about 6 to 9% normal error in determining soil moisture in non-saline conditions, 28 to 41% in terms of using water with salinity of 5 dS/m, and 31-37% when a water with salinity of 10 dS/m was used. The model efficiency index also showed that the device is very useful in non-saline conditions with an average efficiency of 0.75 and is not recommended in saline conditions with negative efficiency index.

کلیدواژه‌ها [English]

  • Irrigation water salinity
  • Soil depth
  • Soil texture
  • System
  • Water content
Ali S., Ghosh N. C., Singh R. and Sethy B. K. (2013). Generalized explicit models for estimation of wetting front length and potential recharge. Water Resour. Manage., 27, 2429–2445.
Colman E. A. and Bodman G. B. (1944). Bravo Hernández and R. Cárdenas-Navarro. Soil Sci. Soc. Am. Proc. 9, 3-11.
Davodi M. H. (2002). Using capacity assessment and capability assessment, computer assessment capacity, third companion between Iran Geotechnical and Mexican University of Engineering, Tehran, Iran Soil Management and Preferred Programs. https://www.civilica.com/Paper-ICGESM03-ICGESM03_028.html [In Persian].
Ebrahimi Pak N. A., Agdernejad A., Tafteh A. and Ahmadi M. (2019). Economical optimization of water distribution in Qazvin irrigation network under different water deficit conditions. J. Environ. Sci. Tech., 21(1),12-32 [In Persian].
Ebrahimi Pak N. A. and Tafteh A. (2017). Determination of yield-water use function for sugar beet in Qazvin. J. Sugar., 33(1), 47-63 [In Persian].
Ghaemi A. and Rahmani Soghayeh, J. (2014). Investigation the performance of smart sensors as a new approach to determine soil moisture content. Iran. J. Irrig. Drain., 8(1), 16-25 [In Persian].
Ghahreman B., Davari K., Astarayi A., Majidi. M. and Tamsaki S. (2009). Correction of gypsum block readings due to salinity effects for soil moisture content measurements. J. Water Soil, 23(1), 69-78.
Jabro J. D., Stevens W. B., Iversen W. M., Allen B. L. and Sainju U. M. (2020). Irrigation scheduling based on wireless sensors output and soil-water characteristic curve in two soils. Sensors. 20, 1336, 2-11.
Katyal A. K. and Kijne J. W. (1980). Prediction of the advancing wetting front in border strip irrigation. Irrig. Sci., 1, 177-184.
Khorami M. Alizadeh A. and Ansari H. (2013). Simulation of water movement and moisture redistribution under drip irrigation systems using hydrus 2D/3D. J. Water Soil, 27(4), 692-702.
Leib B. G., Jabro J. D. and Mtthews G. R. (2003). Field evaluation and performance comparison of soil moisture sensors. Soil Sci., 168, 396-408.
Lobit P., Stirzaker R., Bravo Hernández N. L. and Cárdenas-Navarro R. (2006). Using a wetting front detector to manage drip irrigation in strawberry. 6, 138-152. Available at: https://www.semanticscholar.org/paper/USING-A-WETTING-FRONT-DETECTOR-TO-MANAGE-DRIP-IN-Lobit-Stirzaker/866a01c316f17019fce061f4a9b6330386fe554f.
Malek K. and Peters R. T. (2011). Wetting pattern models for drip irrigation new empirical mode. J. Irrig. Drain. Eng., 137(8), 530-536.
Moncef H., Hedi D., Jelloul B. and Mohamed M. (2002). Approach for predicting the wetting front depth beneath a surface point source: theory and numerical aspect. Irrig. Drain., 51, 347–360.
Nolz R., Kammerer G. and Cepuder P. (2013). Calibrating soil water potential sensors integrated into a wireless monitoring network. Agri. Wat. Manage., 116, 12–20.
Rahmani S. J. and Ghaemi A. A. (2014). Evaluation and comparison of smart soil moisture sensor performance with weight method in micro irrigation. The first National Conference on Water Crisis, Esfahan, Khorasgan Eslamic Azad University [In Persian].
Tafteh A., Emdad M. E. And Ghalebi S. (2018). Determination of the best situation of border irrigation for increasing application Efficiency using SRFR model. J. Irrig. Wat. Eng., 8(30), 200-210 [In Persian].
Yao W. W., Ma X. Y., Li J. and Parkes M. (2011). Simulation of point source wetting pattern of subsurface drip irrigation. Irrig. Sci., 29, 331–339.
Zare Abyaneh H., Khosraie A., Ebrahimi Pak N. A., Tafteh A. and Jozi M. (2020). Selecting the optimal model of water infiltration into the soil (Case study: Jahad Nasr lands of Khuzestan province). Water Irrig. Manage., 9(2), 291-304 [In Persian].