نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشکده مهندسی عمران، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران

2 دانشجوی کارشناسی ارشد، گروه مهندسی منابع آب، دانشکده فنی، دانشگاه آزاد اسلامی واحد اهر، اهر، ایران

چکیده

بررسی تغییرات منابع آب زیرزمینی در برنامه‌ریزی و مدیریت پایدار منابع آب هر منطقه از اهمیت فراوانی برخوردار است. هدف از این پژوهش، بررسی روند موجود و دوره زمانی مؤثر در روند تراز آب زیرزمینی در مقیاس ماهانه در 15 ایستگاه پیزومتری دشت اردبیل با استفاده از روش­های ناپارامتری من-کندال، ابزار پیش­پردازش زمانی (تبدیل موجک گسسته) و روش پیش­پردازش مکانی (نقشه خود­سازمانده) است. ابتدا روش خوشه­بندی نقشه خود­سازمانده برای تقسیم مکانی تراز آب زیرزمینی به خوشه­های همگن استفاده شد.  سپس تبدیل موجک برای استخراج ویژگی­های دینامیکی و چند­مقیاسی برای نا­ایستایی داده­های تراز آب زیرزمینی پیزومترهای مرکزی در سطح 3 استفاده شد. آزمون من-کندال به ترکیبات مختلفی از تبدیل موجک گسسته بعد از حذف ارتباط معنی‌دار مرتبه اول برای محاسبه زیر سری جزئی مسئول در روند سری­های زمانی پیزومترهای مرکزی اعمال شد. نتایج روند منفی را در منطقه مورد مطالعه نشان داد. در بیشتر سری­های زمانی تراز آب زیرزمینی زیر سری جزئی در سطح 3 در ترکیب با زیرسری تقریبی  به‌عنوان مؤلفه زمانی تأثیرگذار شناخته شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessment of Trend in Groundwater Level using Hybrid Mann-Kendall and Wavelet Transform Method (Case Study: Ardabil Plain)

نویسندگان [English]

  • Farnaz Daneshvar Vousoughi 1
  • Reza Shaker 2

1 Assist. Professor, Department of Civil Engineering, Faculty of Civil Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran

2 M.Sc. Student, Department of Water Resources Engineering, Faculty of Engineering, Ahar Islamic Azad University, Ahar, Iran

چکیده [English]

Study of changes in groundwater resources has great importance on planning and management of sustainable water resources in any region.  The goal of this study was trends and dominant period investigation in groundwater level data at monthly timescales in fifteen piezometers of Ardabil plain using non-parametric Mann–Kendall (MK), temporal pre-processing (discrete wavelet transform) and spatial pre-processing (self-organizing map) methods. In first step, a Self-Organizing-Map (SOM)-based clustering technique was used to identify spatially homogeneous clusters of groundwater level (GWL) data. At second step, the wavelet transform (WT) was also used to extract dynamic and multi-scale features of the non-stationary GWL for central piezometers at 3 level. At last step, The MK test were applied to different combinations of DWT after removing the effect of significant lag-1 serial correlation to calculate components responsible for trend of the time series.  The results showed that negative trend is prevalent in the case study; generally, wavelet-based detail at level 3 plus the approximations time series was conceded as the dominant periodic component.

کلیدواژه‌ها [English]

  • Ardabil Plain
  • Dominant Period
  • Sub-Series
  • Non-Parametric
  • Self-Organizing Map
Adamowski J., Chan H. F. (2011). A Wavelet neural network conjunction model for groundwater level forecasting, J. Hydrol., 407, 28-40.
 
Almasri A., Locking H. and Shukar G. (2008). Testing for climate warming in Sweden during 1850–1999 using wavelet analysis. J. Appl. Stat., 35, 431–443.
 
Almedeij J. and AL-Ruwaih F. (2006). Periodic behavior of groundwater level fluctuations in residential areas. J. Hydrol., 328, 677-684
 
Araghi A., Mousavi Baygi M., Adamowski J., Malard J., Nalley D. and Hasheminia S. M. (2015) Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data. Atmos. Res., 155, 52-72.
 
Azizi Q. (2004). The relationship between recent droughts and groundwater resources in Qazvin Plain. J. Geogr. Res., 46, 131-143 [In Persian].
 
Chen Z., Grasby S. and Osadetz K. G. (2004). Relation between climate variability and groundwater level in the upper carbonate aquifer, south Manitoba, Canada. J. Hydrol., 290, 43-62.
 
Chitsazan M. Mirzaei Y. Mohammadi Behzad H. R. (2010). The effect of drought on the quantity and quality of groundwater resources of Khoy Plain. Second National Conference on Drought Effects and Management Tools, Esfahan, Iran [In Persian].
 
Daneshvar Vousoughi F., Dinpashoh Y. and Alami M.T. (2011). The effect of drought on groundwater alignment in two recent decades (Case Study: Ardebil Plain). J. Water Soil Sci., 4(21), 165-179 [In Persian].
 
Gehreles J. C., Van Geer F. C., and De Vries J. J. (1994). Decomposition of groundwater level fluctuations using transfer modeling in an area with shallow to deep unsaturated zones. J. Hydrol., 157, 105-138.
 
Gibrilla A., Anornu G. and Adomako D. (2018). Trend analysis and ARIMA modelling of recent groundwater levels in the White Volta River basin of Ghana. Groundwater Sustain. Dev., 6, 150-163.
 
Jahanbakhsh S. and Karami F. (2010). Relation between drought and groundwater resources of Tabriz Plain. Final report of the research project, Tabriz University [In Persian].
 
Jan C-D., Chen T-H. and Lo W-C. (2007). Effects of rainfall intensity and distribution on groundwater level fluctuations. J. Hydrol., 332, 348-360.
 
Kahya E., and Kalayci S. (2004). Trend analysis of streamflow in Turkey, J. Hydrol., 289, 128-144.
 
Karami F. and Bayati Khatibi M. (2010). Impact of drought on dropdown of groundwater in Sarab Plain. Final report of the research project, Tabriz University, Iran [In Persian].
 
Kendall M. G. (1975). Rank Correlation Measures. Charles Griffin Inc. London. Kohonen, T. The Self organizing map, Neurocomputing. 1998. 21, 1-6.
 
Kumar S., Merwade V., Kam J. and Thurner K. (2009). Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol., 374, 171-183.
 
Brocque A., Kath J. and Smith K. (2018). Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles. J. Hydol., 561, 976-986.
 
Lee J. Y., Yi M. J., Moon S. H., Cho M., Won J. H., Ahn K. H. and Lee J. M. (2007). Causes of the changes in groundwater levels at Daegu, Korea: the effect of subway excavations. Bull. Eng. Geol. Environ., 66, 251-258.
 
Mann, H. B. (1945). Non-parametric test against trend. Econometrica, 13, 245-259.
 
Nalley D., Adamowski J. and Khalil B. (2012). Using discrete wavelet transforms to analyze trends instream flow and precipitation in Quebec and Ontario (1954–2008). J. Hydrol., 475, 204-228.
 
Nourani V., Alami M. T. and Aminfar M. H. (2009). A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intel., 22, 466– 472.
 
Nourani V., Taghi Alami, M., Daneshvar Vousoughi, F. (2015). Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling, J. Hydrol., 524, 255–269.
 
Panda K., Mishra A., Jena S. K., James B. K. and Kumar A.  (2007). The influence of drought and anthropogenic effects on groundwater levels in Orissa, India. J. Hydrol. Process., 343, 140-153.
 
Paul S., Datta D. and Sarkar P. K. (2011). Determination of trend of temporal trend of annual precipitation by stationary wavelet components in Northern part of Maharashtra. J. Environ. Sci., 2, 1–11.
 
Rashid Md. M., Beecham, S. and Chowdhury R. K. (2015). Assessment of trends in point rainfall using Continuous Wavelet Transforms. Adv. Water Resour., 82, 1-15.   
 
Shahid, S., and Hazarika, M. K. (2009). Groundwater drought in the northwestern districts of Bangladesh. Water Resour. Manage., 24, 19892006.
 
Tan C., Huang B., Liu K., Chen H., Liu F., Qiu J. and Yang J. (2017). Using the wavelet transform to detect temporal variations in hydrological processes in the Pearl River, China. Quat. Int., 440, Part B, 10, 52-63.
 
Wang H., Zhang M., Zhu H., Dang X., Yang Z. and Yin L. (2012). Hydro-climatic trends in the last 50 years in the lower reach of the Shiyang River Basin, NW China. Catena 95, 33–41.
 
Xu K., Milliman J.D., and Xu H. (2010). Temporal trend of precipitation and runoff in major Chinese rivers since 1951. Global. Planet. Change., 73, 219-232.
 
Zhang W., Yan Y., Zeng J., Li L., Dong X. and Cai H. (2009). Temporal and spatial variability of annual extreme water level in the Pearl River Delta region, China. Global. Planet. Change., 69, 35-47.