نوع مقاله : مقاله کوتاه

نویسندگان

1 کارشناسی ارشد، گروه علوم و مهندسی آب، گرایش آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

2 دانشیار، گروه علوم و مهندسی آب، ، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

چکیده

کروم شش ظرفیتی از جمله فلزات سنگین سمی و قابل حل در آب است که هم از طریق سیستم گوارش و هم از طریق پوست در بدن انسان جذب و ذخیره می‌گردد. لذا هدف از این مطالعه حذف کروم شش ظرفیتی از محلول های آبی توسط پودر مخروط کاج به روش پیوسته بوده است. جاذب مورد نظر در شرایط آزمایشگاهی تهیه و با استفاده از الک استانداردASTM با اندازه مش 100 دانه بندی شد. برای تهیه محلول استوک کروم از دی کرومات پتاسیم استفاده شد و غلظت کروم در نمونه ها با استفاده از دستگاه جذب اتمی تعیین گردید. به منظور بررسی رفتار جاذب در ستون بستر ثابت، ستون شیشه ای به طول 25 سانتی متر و قطر 5/2 سانتی متر مورد استفاده قرار گرفت. اثر غلظت اولیه کروم و دبی مورد بررسی قرار گرفت. نتایج آزمایشات نشان داد ماکزیمم یون کروم شش ظرفیتی جذب شده بر روی جاذب mg/g748/38 در شرایط دبی ml/min12 و غلظت اولیهmg/l 11/0 بدست آمد. با توجه به نتایج بدست آمده، کل مقدار یون کروم جذب شده و ظرفیت جذب ستون با افزایش دبی کاهش یافته و با افزایش غلظت کروم ورودی افزایش می‌یابد. در دبی ml/min 4 و غلظت mg/l15/0 یون کروم شش ظرفیتی بخوبی از روی ستون با جاذب پودر مخروط کاج حذف می شود. داده ها نشان دادند که می‌توان از پودر مخروط کاج به عنوان یک روش موثر و ارزان قیمت در جهت حذف کروم شش ظرفیتی از پساب‌های آلوده استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessing the Efficiency of Continuous Flow Column of Pine Fruit Powder in Removal of Chromium (VI) from Aqueous Solution

نویسندگان [English]

  • Fahime Sharifan 1
  • Ali Shahidi 2
  • Abbas Khashei Siuki 2

1 M.Sc. Student of Irrigation and Drainage, Department of Water Engineering, Faculty of Agriculture, University of Birjand, Birjand, Iran

2 Associate Professor, Department of Water Engineering, School of Agriculture, University of Birjand, Iran

چکیده [English]

The hexavalent chromium is one of the toxic and soluble heavy metals, which is absorbed and stored in human body through the digestive system and skin. Therefore, the aim of this study was to adsorb the hexavalent chromium from aqueous media using continuous flow fixed bed of pine fruit. The adsorbent was prepared in laboratory scale and pulverized by standard ASTM sieve (100 mesh). Stock solution of chromium was prepared using potassium dichromate and the unknown concentration of hexavalent chromium was determined using atomic absorption spectrometry. In order to study the behavior of the sorbent in the fixed-bed column, we used glass column with the length of 25 cm and diameter of 2.5 cm. The effect of initial concentration of chromium and flow rate were examined. Test results showed that the maximum uptake of Cr(VI) obtained was 38.748 mg/g in a flow rate of 12 ml/min and initial concentration of 0.11 mg/l. According to the obtained results, the total amount of chromium absorbed and the adsorption capacity of the column decreased by increasing the concentration of initial chromium concentration. The maximum adsorption of Cr(VI) using the pine fruit powder achieved at flowrate of 4 ml/min and initial concentration of adsorbent of 0.15 mg/l. our findings confirms the capability of pine fruit powder application as an effective and cheap method for the removal of Cr(VI) from polluted effluents.

کلیدواژه‌ها [English]

  • Pine fruit powder
  • Continuous Flow
  • Absorption
  • Hexavalent Chromium
Aksu Z. and Gönen F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem., 39(5), 599-613.
 
Coelho F. S., Ardisson J.D., Moura F.C.C., Lago R.M., Murad E. and Fabris J.D. (2008). Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contamination. Chemosphere, 71(1), 90-96.
 
Dong J., Xu Z. and Wang F. (2008). Engineering and characterization of mesoporous silicacoated magnetic particles for mercury removal from industrial effluents. J. Appl. Surface Sci., 254(11), 3522-3530.
 
Donmez G. and Zumriye A. (2002). Removal of Chromium (VI) from saline wastewater by Dunaliella species. Process Biochem., 38(5), 751-762.
 
Elwakeel K. Z. (2010). Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desal., 250(1), 105-112.
 
Ko D. C. K., Porter J. F. and McKay G. (2000). Optimised correlations for the fixed bed adsorption of metal ions on bone char. Chem. Eng. Sci., 55(23), 5819–5829.
 
Lefebvre D. D. and Edwards C. D. (2010). Decontaminating heavy metals using photosynthetic microbes. In: Shah V, editor. Emerging Environmental Technologies. Vol 2. New York: Springer.
 
Mathialagan T. and Viraraghavan T. (2006). Adsorption of cadmium from aqueous solutions by perlite. J. Hazard. Mat., 94(3), 291–303.
 
Padmesh T. V. N., Vijayaraghavan K., Sekaraz G., and Velan M. (2005). Batch and column studies on biosorption of acid dyes on fresh water macro alga Azollafiliculoides. J. Hazard. Mat., 125, 121-129.
 
Raftari H, loazemi H., Ganji dust H. and Ayati B., (2010). Evaluating the ability of natural absorbents remove heavy metals copper and lead. The Second International Symposium on Environment [In Persian]
 
Ribeiro A. B., Mateus E. P., Ottosen L. M. and Bech-Nielsen G. (2000). Electrodialytic removal of Cu, Cr, and As from chromatid copper arsenate treated timber waste. J. Environ. Sci. Technol., 34(5), 784-788.
 
Samarghandi M. R., Azizian S. and Shirzad Sibani M. (2010). Removal of Hexavalent Chromium from Aqueous Solution by Modified Holly Sawdust: A Study of Equilibrium and Kinetics. Sci. J. Hamadan Univ. Med. Sci. Health Serv., 16(4), 61-67 [In Persian].
 
Sivakumar P. and Palanisamy P. N. (2009). Adsorption studies of basic Red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorum. Int. J. Chem. Technol. Res., 1, 502-510.
 
Soltani B. and Baghdadi M. (2014). Removal of green malachite using modified cotton from aqueous solution, Proc. 2014, 2nd Int. Conf. on Iranian environmental research. Hamedan [In Persian].
 
Taheriyan P. (2015). Study of chromium removal from wastewater in a fixed bed and a movable column of absorbent natural Grape leaves. M.Sc. Dissertation, University of Birjand, Birjand, Iran, 79pp. [In Persian]
 
Tewari N., Vasudevan P. and Guha B. K. (2005). Study on biosorption of Cr(VI) by Mucorhiemalis. Biochem. Eng. J., 23(2), 185-192.
 
Wu J., Zhang H., He P-J., Yao Q. and Shao L-M. (2010). Cr(VI) removal from aqueous solution by dried activated sludge. J. Hazard. Mat., 176(1-3), 697-703.
 
Wu Y., Zhang J., Tong Y. and Xu X. (2009). Chromium (VI) reduction in aqueous solutions by Fe3O4Stabilized Fe0 nanoparticles. J. Hazard. Mat. 172 (2-3), 1640-1645.
 
Yuan P., Fan M., Yang D., He H., Liu D. and Yuan A. (2009). Montmorillonite –supported magnetite nanoparticles for the removal of Hexavalent Chromium from Aqueous Solutions. J. Hazard. Mat., 166, 821-829.
 
Yuan P., Liu D., Fan M., Yang D., Zhu R. and Ge F. (2010). Removal of hexavalent chromium from aqueous solution by the diatomite-supported/unsupported magnetite. J. Hazard. Mat., 73, 614-621.